出处:《Handbook of Research on the Global Impacts and Roles of Immersive Media》
标题:Immersion Domes: Next-Generation Arts and Entertainment Venues
作者:Edward Lantz,Vortex Immersion Media,USA
翻译:Horace Lu
(注:键盘快捷键“w”或左侧菜单右上角按钮,可切换文章列表视图与大纲视图)
- 摘要 ABSTRACT
- 简介 INTRODUCTION
- 背景 BACKGROUND
- 数字球幕设计 DIGITAL DOME DESIGN
- 数字球幕的应用形式 DIGITAL DOME APPLICATIONS
- 剧院类型 Theater Types
- 沉浸式体验 Immersive Experiences
- 360 度电影体验 360 Cinema Experiences
- 现场 CineTheater ™表演 Live CineTheater ™ Performances
- 环境视觉效果 Ambient Visuals
- 互动体验 Interactive Experiences
- 虚拟世界体验 Virtual World Experiences
- 讲座和演示 Lectures and Presentations
- 戏剧体验 Theatrical Experiences
- 现场音乐会和舞蹈音乐活动 Live Concerts and Dance Music Events
- 球幕广播和 360 度多播 Domecasting and 360 Multicasting
- 案例研究 CASE STUDIES
- 未来 THE FUTURE
- 未来研究 FUTURE RESEARCH
- 结论 CONCLUSION
- 致谢 ACKNOWLEDGMENT
- 参考文献 REFERENCES
摘要 ABSTRACT
Large-scale immersion domes are specialized embodiments of spatial augmented reality allowing large groups to be immersed in real-time animated or cinematic virtual worlds with strong sense-of-presence. Also called fulldome theaters, these spaces currently serve as giant screen cinemas, planetariums, themed entertainment attractions, and immersive classrooms. This chapter presents case studies for emerging applications of digital domes, reviews dome theater design basics, and suggests that these venues are on track to become mainstream arts and entertainment centers delivering global impact at scale. Standard venue designs will be necessary to realize the full potential of an immersive media arts and entertainment distribution network. This chapter provides rationale for standardization of immersion domes for multi-use events spaces, immersive cinemas, and live performing arts theaters.
大型沉浸式球幕是空间增强现实(Spatial Augmented Reality, SAR)的一种独特表现形式,它使得大量观众能够实时沉浸在动画或电影般的虚拟世界中,感受到强烈的临场感。这些空间,也被称作 Fulldome 影院,目前被广泛用于巨幕电影院、天文馆、主题娱乐场所以及沉浸式教室等多种场合。本章节将介绍数字球幕的新兴应用案例,回顾球幕影院的设计基础,并展望这些场所如何逐渐发展成为主流的艺术和娱乐中心,以规模化的方式产生全球性的影响。为了充分发挥沉浸式媒体艺术和娱乐分销网络的潜力,场所设计的标准化显得尤为重要。本章还将阐述为何需要标准化沉浸式球幕,以及它们在多用途活动空间、沉浸式电影院和现场表演艺术剧院中的应用。
简介 INTRODUCTION
Spatial augmented reality (SAR) maps pixels onto physical objects to produce visually immersive or digitally augmented experiences. SAR embodiments include architectural projection mapping and digital domes (fulldome theaters) which are general-purpose immersive visualization environments capable of accommodating large groups without the need for VR headsets, glasses or goggles. Digital domes can incorporate a variety of extended reality (XR) modalities including the incorporation of live performers with interactive tracking, stage and prop projection mapping, and real-time display of cyber worlds and metaverse environments.
空间增强现实通过将像素映射到物理对象上,创造出视觉上沉浸式或数字增强的体验。SAR 的具体实现包括建筑投影映射(architectural projection mapping)和数字球幕(Fulldome 影院),这些环境提供了通用的沉浸式可视化体验,能够容纳众多观众,无需依赖虚拟现实头显、眼镜或护目镜。数字球幕能够整合各种扩展现实(Extended Reality, XR)的模式,包括将现场表演者与交互式跟踪、舞台和道具投影映射、网络世界和元宇宙环境的实时展示等结合起来。
Because of their large capacity, high throughput and ease of use (no wearables or controllers), digital domes have the potential to become a mass medium for XR similar to cinemas. Domes and other SAR environments cannot replace VR—they are a medium in their own right. They are advanced storytelling environments capable of touring audiences through virtual worlds, scientific datasets cinematic environments and more. Walk-through and stand-up SAR environments can also be highly interactive. Digital dome venues do have a number of limitations when compared to VR. For instance, dome theaters accommodating large audiences are typically limited to a hemispheric field of view—half the visual field of VR—because large standing or seated audiences block a large portion of the audience’s visual field-of-view. And with large audiences the sense of personal agency is muted, with the experience being more akin to a tour bus ride or a large window into virtual worlds.
得益于其能够容纳大量观众、高吞吐量和易用性(无需穿戴设备或控制器),数字球幕展现出成为类似电影院那样的 XR 大众媒介的潜力。球幕和其他 SAR 环境并非要取代 VR,而是作为一种独立的媒介存在。它们提供了先进的叙事环境,能够引导观众穿越虚拟世界、科学数据集、电影环境等。步行穿越和站立式的 SAR 环境同样具有高度的互动性。然而,与 VR 相比,数字球幕在容纳大量观众时存在一定的局限性。例如,大型观众群体的球幕影院通常只能提供半球形视野——这是 VR 视野范围的一半——因为观众站立或坐着时,大量人群会阻挡其他观众的大部分视野。此外,在众多观众面前,个人的主导感会减弱,体验更像是乘坐旅游巴士或通过大窗户观察虚拟世界。
The tour bus analogy accurately describes contemporary immersion dome experiences in planetariums, giant screen cinemas and IMAX ® Domes. It would be tempting to classify dome theaters as passive group immersive cinema displays, or group immersive portals into cyberspace. However, our recent work involves the merging of live performers into real-time rendered environments, allowing performers to command and interact with the immersive world. This moves digital domes more firmly into the realm of mixed reality.
将球幕影院比作旅游巴士,准确地描述了当代天文馆、巨幕电影院和 IMAX ®球幕中的沉浸式球幕体验。虽然人们可能倾向于将球幕影院视为一种被动的群体沉浸式电影展示,或是通往网络空间的群体沉浸式门户,但最近的工作中,我们开始探索将现场表演者融入实时渲染的环境中,使表演者能够与沉浸式世界进行互动和指挥。这将数字球幕推向了混合现实的新领域。
The integration of stadium seating for optimal immersion, a projection-mapped stage and foreground props utilizing SAR techniques, in combination with 360 scenes projected on the dome create a unique format that we call CineTheater ™. In addition, multipurpose dome venues without seating can serve as community hubs for connecting, creative placemaking, black box theaters, and special event venues. It is suggested that both designs will find utility and should be pursued in the development of next-generation, location-based arts and entertainment venues.
我们将针对沉浸式体验优化的体育场座椅,与利用 SAR 技术进行投影映射的舞台和前景道具,以及投影在球幕上的 360 度场景整合起来,创造了称为 CineTheater ™的独特格式。此外,这种多功能的球幕场馆在不设座椅的情况下,可以灵活转变为社区的聚集地,用于促进交流、创意场所营造*、黑匣子剧院和特殊活动场所。建议在开发下一代基于位置的艺术和娱乐场所时,应当充分考虑这两种设计,它们都将发挥其效用。
创意场所营造(Creative Placemaking)是一个城市规划和发展的概念,它强调通过艺术和文化活动来提升和活化社区空间,从而增强社区的身份感、吸引力和活力。这个概念认为,创造性的场所营造不仅仅是物理空间的改造,而是一个涉及社区参与、经济活力、社会资本和文化身份的综合过程。
背景 BACKGROUND
Immersion domes typically map 360 visuals onto spherical, hemispheric, or ovoid screens to deliver visual experiences similar to VR headsets but without the need for glasses or goggles (Lantz, 1997). It’s like putting a giant VR headset on a large group of people. The resulting wide field-of-view imagery can trigger brain states not usually accessible via film or other digital media such as sense-of-motion (vection), presence, scale, awe, and have been shown to communicate concepts better, create a greater interest in learning, and are more effective than a movie screen or television at conveying certain scientific concepts (Lantz, 2011).
沉浸式球幕通常将 360 度视觉效果映射到球形、半球形或卵形屏幕上,提供类似于虚拟显示头显的视觉体验,但无需眼镜或护目镜(Lantz, 1997)。这就像是给一大群人戴上了一个巨大的虚拟现实头显。由此产生的宽视野图像可以触发通常无法通过电影或其他数字媒体获得的大脑状态,如运动感(sense-of-motion / vection)、临场感、规模感、敬畏感,并且已被证明能更好地传达概念,激发学习兴趣,并且在传达某些科学概念方面比电影银幕或电视更为有效(Lantz, 2011)。
Digital domes can provide a greater instantaneous visual field-of-view than consumer VR headsets, nearly encompassing the viewer’s entire peripheral vision. Peripheral vision is associated with vection, spatial learning, and navigation skills (Yamamoto & Philbeck, 2013). Because the audience is free to use head motion to observe immersive scenes without the need for head tracking, higher frame rates are not strictly required. Anecdotal experience with audiences indicates that VR experiences presented in digital domes are preferred by many who otherwise feel confined, experience vertigo, or have other difficulties with VR headsets.
数字球幕能够提供比消费级虚拟现实头显更大的即时视野(instantaneous visual field-of-view),几乎涵盖了观众的整个周边视觉。周边视觉与运动感、空间学习和导航技能有关(Yamamoto & Philbeck, 2013)。因为观众可以自由地通过头部运动来观察沉浸式场景,而无需头部跟踪,所以并不严格要求高帧率。根据观众的轶事经验表明,许多在使用虚拟现实头显时感到受限(confined)、经历眩晕(vertigo),或有其他困难的人,更喜欢数字球幕中呈现的虚拟现实体验。
The first digital domes were pioneered for military vehicle simulation and training, but it is the planetariums that first embraced video projection in domes for public exhibitions. At last count over 1,665 digital domes—mostly planetariums, science centers, giant screen theaters and portable domes—are documented worldwide, with nearly half in the U.S. (Petersen, 2019a). And over 335 titles have been produced for this market ranging from astronomy and space science, earth science, and more (Petersen 2019b).
最早的数字球幕是为军事车辆模拟和训练而开发的,但首先是天文馆开始在球幕上采用视频投影进行公共展览。根据最新统计,全球有超过 1,665 个数字球幕——主要是天文馆、科学中心、巨幕剧院和便携式球幕,其中近一半位于美国(Petersen, 2019a)。同时,针对这个市场已经制作了超过 335 部影片,题材范围包括天文学、空间科学、地球科学等(Petersen 2019b)。
While narrative storytelling has long been a mainstay of planetarium programming, with the advent of laser graphics in the 1970s and now 360 “fulldome” video graphics and VR content creation, arts and entertainment programming has increasingly found a home in planetarium programming (Lantz, 2009; Lantz, 2018).
虽然叙事性故事讲述(narrative storytelling)长期以来一直是天文馆节目的主要组成部分,但随着 1970 年代激光图形(laser graphics)的出现,以及现在的 360 度“Fulldome”视频图形和虚拟现实内容创作,艺术和娱乐节目越来越多地在天文馆节目中找到了自己的位置(Lantz, 2009; Lantz, 2018)。
数字球幕设计 DIGITAL DOME DESIGN
Digital dome theaters include portable (inflatable) planetariums, smaller classroom planetariums in universities and school districts, public or private institutional digital domes largely in museums and science centers, giant screen film theaters which have converted to digital including, most recently, IMAX ® Domes. In addition, a number of theme park rides employ domes and other wide FOV screens (Fraser, 2018).
数字球幕影院包括可移动(充气式)天文馆、大学和学区的小型教室天文馆、主要位于博物馆和科学中心的公共或私立机构数字球幕,以及最近转换为数字放映的巨幕电影院,包括最新的 IMAX ®球幕。此外,许多主题公园的游乐设施也采用了球幕和其他宽视野屏幕(Fraser, 2018)。
While there are now 1,665 digital domes in the world, there are only a small number of pioneering arts and entertainment dome theaters that have emerged in the past decade. It is a now a good time to establish industry standards for the coming generation of arts and entertainment domes.
尽管现在全球有 1,665 个数字球幕,但在过去十年中,只有少数先锋艺术和娱乐球幕影院出现。现在是为即将到来的艺术和娱乐球幕建立行业标准的好时机。
There are existing industry standards that can apply to arts and entertainment domes (Lantz, Wyatt, Bruno, & Neafus 2004). The Dome Master Specification, first drafted in 2004 at the Fulldome Standards Summit in Valencia, Spain, has allowed the free exchange of cinematic digital dome programming between digital planetariums, and continues to be updated by the trade association IMERSA: Immersive Media, Entertainment, Research, Science, Arts (2014) which was founded in 2008 to foster the fulldome video format. This format was subsequently incorporated into the Digital Immersive Giant Screen Specifications, developed by the Giant Screen Cinema Association for the conversion of 70mm film theaters to giant screen digital cinema (DIGSS, 2018).
有一些现有的行业标准可以适用于艺术和娱乐球幕(Lantz, Wyatt, Bruno, & Neafus 2004)。2004 年在西班牙瓦伦西亚举行的 Fulldome 标准峰会上首次起草的《球幕母版规范》(Dome Master Specification),使得数字天文馆之间能够自由交换电影数字球幕节目,并且由成立于 2008 年的贸易协会 IMERSA(Immersive Media, Entertainment, Research, Science, Arts)继续更新,该协会旨在促进 Fulldome 视频格式。随后,这一格式被纳入由巨幕电影协会开发的数字沉浸式巨幕规范中,用于将 70mm 电影剧院转换为巨幕数字电影(DIGSS, 2018)。
If immersion domes are to become a recognized mainstream entertainment format at scale—allowing mass distribution of immersive experiences—basic design principles must be adopted, and specific design features must be chosen and adhered to by the industry. This section focuses on some of the more critical design parameters and principles that must come into play when designing next generation immersive venues.
如果沉浸式球幕要成为一种公认的规模化主流娱乐格式——允许沉浸式体验的大规模分发——那么必须采纳基本的设计原则,并且必须由行业选择并遵循特定的设计特征。本节重点介绍了在设计下一代沉浸式场所时必须考虑的一些更关键的设计参数和原则。
In general, immersive theaters typically utilize one or more video projectors to cover the entire surface of a dome screen. LED domes are also emerging but are currently limited to specialized applications such as theme parks by their high cost. Therefore, the focus of this chapter is on projection domes, with an eye towards future emissive screens such as LED. Audio systems are more flexible and do not dictate theater design to the same degree as display systems so they will not be covered in as much detail.
一般来说,沉浸式剧院通常使用一个或多个视频投影机来覆盖整个球幕屏幕的表面。LED 球幕也在不断涌现,但由于成本高昂,目前仅限于主题公园等特殊应用。因此,本章的重点是投影球幕,同时也关注未来可能的自发光屏幕,如 LED。音频系统具有较高的灵活性,并不像显示系统那样对剧院设计产生决定性影响,因此,对于音频系统的讨论将不会像显示系统那样深入。
场所设计 Venue Design
永久性球幕场所 Permanent Dome Venues
Most permanent dome theaters utilize one or more video projectors to cover the entire surface of a perforated aluminum dome screen. Perforated aluminum screens are nearly seamless when panels are precisely butt-seamed and are also nearly transparent to sound. This allows sound absorbing material to be placed behind the dome to mitigate unwanted reflections. It also allows speakers to be mounted behind the screen as well as fire sprinklers.
大多数永久性球幕剧院使用一个或多个视频投影机来覆盖整个穿孔铝制(perforated aluminum)球幕屏幕的表面。当面板精确对接时,穿孔铝屏幕几乎是无缝的,并且几乎完全透声。这允许在球幕后面放置吸声材料以减少不必要的反射,也允许在屏幕后面安装扬声器以及消防喷水器。

Figure 1. Cutaway of geodesic dome with hanging vinyl cover and internal negative-pressure screen
Source: © 2019 Pacific Domes, Inc. Used with permission.
移动球幕场所 Mobile Dome Venues
Building digital planetariums and giant screen theaters is an expensive affair. Less expensive prefabricated mobile dome theaters are a popular alternative and can be found at festivals, sporting events, conventions, and more. The most common mobile domes utilize a geodesic frame with vinyl cover and negative pressure internal fabric projection screen supported via a suction fan (Figure 1). With a UV resistant heavy vinyl cover, HVAC and an interior deck or slab, these structures can also be used as semi-permanent theaters up to 37 meters in diameter with a lifetime of 20 years or more. Air-supported domes are also popular for larger venues of 60 meters or more. These structures require positive air pressure requiring revolving doors or airlocks to maintain interior air pressure.
建设数字天文馆和巨幕电影院通常需要巨额投资。作为一种经济实惠的替代方案,预制的移动式球幕剧院因其成本效益而广受欢迎,常见于节日庆典、体育赛事、会议等多样场合。这类最常见的移动球幕采用多面体框架,覆盖有耐紫外线的重型乙烯基材料,并配备负压内部织物投影屏幕,通过吸气风扇进行支撑(见图 1)。得益于其耐紫外线的乙烯基覆盖层、完善的空调系统以及内部甲板设计,这些结构能够作为直径达 37 米的半永久性剧院使用,使用寿命长达 20 年甚至更久。对于直径 60 米或更大的场地,空气支撑的球幕同样适用,但这些结构需要通过正压系统和旋转门或气闸来保持内部的恒定气压。
Dome audience viewing and interaction modalities include seated, standing and walkthrough.
球幕影院的观众观赏和互动模式涵盖了坐着观看、站立体验以及步行穿梭等多种方式。
Dome imagery can be unidirectional or omnidirectional. Each configuration has its own unique properties.
球幕影像展示可以是定向的,也可以是全方位的。这两种配置各自拥有其独到的特点。
观众安排 Audience Arrangements
There are two primary viewing configurations in immersion domes—unidirectional, where all audience members face the same direction—and omnidirectional or concentric, where audience members all face the center of the theater like sitting or standing around a campfire (Figure 2). Standing configurations often use handrails to guide visitors since the strong sense of vection can cause a standing audience to lose balance if exclusively focused on a dome presentation.
在沉浸式球幕中有两种主要的观看配置——单向的,即所有观众都面向同一方向——以及全向的或同心的,即观众都面向剧院中心,就像坐在篝火周围或站着一样(图 2)。站立配置通常使用扶手来引导游客,因为强烈的运动感可能会使站立的观众只专注于球幕展示而失去平衡。
For concentric seating (a) the dome screen equator or “springline” is almost always level to the ground—typically raised just above the audience’s heads. Unidirectional seating (b) allows the dome to be tilted in the front to provide foreground. Stadium seating takes full advantage of the dome tilt to further improve viewer sight lines. More on this shortly.
同心座位(a)的设计中,球幕屏幕的赤道线,也称为“弹簧线”(springline),始终保持与地面平行,其高度通常略高于观众头顶。而单向座位(b)的设计则允许球幕的前端向下倾斜,以此创造出视觉上的前景效果。体育场座位则巧妙利用球幕的倾斜角度,进一步优化观众的观看体验。后续内容将对这一设计进行更详尽的阐释。

Figure 2. Dome seating/standing configurations
Unidirectional viewing is especially advantageous for storytelling because:
- The entire audience is looking in the same direction towards a “sweet spot” on the dome
- Single point of focus facilitates character-based storytelling, informational text
- Audience can be flown through or over terrain with everyone flying in same direction
- Audience attention can easily be captured and directed to the left or right
- Provides the most consistent and controlled audience experience
- Stage lighting is simplified – elevated lights can be placed behind the audience
单向观看在叙述故事时具有显著优势,主要体现在以下几个方面:
- 所有观众的目光都集中于球幕上的“最佳视点”
- 统一的焦点使得角色驱动的叙事和信息性文本的传递变得更加高效
- 观众能够共同体验飞行或穿越地形的感觉,每个人都朝着相同的方向前进
- 观众的注意力能够轻松地被集中并引导至特定的左侧或右侧
- 这种设置提供了最为一致和受控的观众体验
- 舞台照明的安排也因这种布局而得到简化,因为提升的灯光可以方便地放置在观众的后方
Concentric viewing presents a number of challenges especially when delivering a cinematic experience, but there are some interesting possibilities as well:
- In concentric seating the audience could be looking in any direction
- The zenith (top) of the dome screen is the only common area of focus
- Flying audience up towards sky or falling are powerful omnidirectional experiences
- Image orientation on the zenith depends on seat location
- Nearly half of the audience will see zenith image upside down
- Especially problematic with text, faces and other objects dependent on orientation
- Text and characters on dome generally need to be repeated around dome for all to see
- Limits use of full dome images (which are the most powerful)
- When flying audiences over landscapes, half of the audience will be flying backwards
- Stadium seating is not possible without raising the entire dome image which reduces the dome image field-of-view for the audience.
- Easily accommodates random standing audience such as cocktail party or networking
- Omnidirectional seating generally results in greater audience capacity
同心式观看在提供电影体验时虽然存在一些挑战,但也带来了一些独特的可能性:
- 同心式座位中,观众的视线可以自由朝向任意方向
- 球幕屏幕的天顶部分成为观众唯一的共享焦点区域
- 引导观众向上飞翔或向下坠落的体验,在全向式观影中具有强烈的沉浸感
- 天顶上的图像方向会根据观众的座位位置而变化
- 大约一半的观众可能会看到倒置的天顶图像
- 对于文本、面部以及其他方向敏感的物体,尤其具有挑战性
- 为了确保每个观众都能看到,球幕上的文本和角色通常需要在屏幕周围重复显示
- 限制了 Fulldome 图像最为有力的使用方式
- 当带领观众飞越景观时,一半的观众将会体验到倒飞的效果
- 如果不提升整个球幕图像,就无法实现体育场式座位,这将减少观众的球幕图像视野
- 这种布局易于容纳随意站立的观众,适合举办鸡尾酒会或社交活动等场合
- 全向式座位通常能够容纳更多的观众
剧院座位 Theater Seating
Theater seats are a key component in sit-down environments. As will be seen, it is important to assure that the seat tilt provides audiences with an optimal view of the dome screen. In general, seat backs should tilt back further the closer they are to the front of the screen. Removable seats are desirable in multipurpose domes. A number of multisensory “4D” special effects can also be built into theater seats including vibroacoustic “bass shakers,” personal sound environments, seat cushion pokers and air bladders that inflate and deflate in sequence, mist, buzzers, neck and leg ticklers and motion seats.
剧院座位在坐下式观影环境中扮演着至关重要的角色。为了确保观众能够享受到最佳的球幕屏幕视野,座位的设计和倾斜角度至关重要。一般而言,座位的背部倾斜程度应随着离屏幕前方的距离增加而增加。在多功能球幕影院中,选择可移动座位是一个理想的解决方案。剧院座位的设计还可以集成多种多感官“4D”特效,以增强观众的沉浸式体验,包括:振动声学“低音炮”,个人声音环境,座位垫刺激器和按顺序充气放气的气垫,雾化,蜂鸣器,颈部和腿部刺激器,以及动感座位。
视线与球幕倾斜 Sight Lines and Dome Tilt
In dome theater design we assess the degree of audience immersion by measuring the image field-of-view (FOV). The FOV is defined by the horizontal and vertical angles over which the dome image extends in a typical viewers eye when seated or standing naturally. FOV is a function of where the person is seated or standing in the dome. We use standard ergonomic field-of-view angles for both (a) seated (leaning back) and (b) standing configurations (Figure 3).
在球幕剧院的设计过程中,我们通过计算图像视野(Field-of-View, FOV)来衡量观众的沉浸体验。FOV 是指在标准坐姿或站姿下,球幕图像在观众视野中所占据的水平和垂直角度范围。这一视野角度是根据观众在球幕中的坐立位置来确定的。我们针对(a)坐姿(向后倾斜)和(b)站姿配置,采用了符合人体工学标准的视野角度(见图 3)。

Figure 3. Standard ergonomic field-of-vision for a) seated and reclined and b) standing
We can assess the degree of visual immersion by projecting these “sight lines” from a typical viewer’s eye and measuring the vertical and horizontal angle covered by the dome image. Since the horizontal FOV is almost always at least 180 degrees, the vertical FOV is typically the limiting factor in creating a powerful sense of immersion. Ideally, the entire surface area of every viewer’s retinas would be completely mapped with pixels.
为了评估视觉沉浸的程度,我们可以通过模拟典型观众的“视线”,并测量这些视线在球幕图像上所覆盖的垂直和水平角度来实现。由于水平视野范围(FOV)通常至少为 180 度,垂直视野范围往往是创造深度沉浸感的关键限制因素。理想情况下,观众视网膜的整个面积都应被球幕上的像素完全覆盖。
The (4a) standing configuration (Figure 4) provides the narrowest vertical FOV in natural standing head position. Viewers must look up to maximize their sense of immersion. Slightly reclining seats (4b) provide viewers with an improved FOV. Note that the front seats would ideally be reclined at a greater angle to maximize immersion. Tilting the dome as shown in (4c) improves immersion, especially for viewers towards the front of the theater. Increasing dome tilt and adding stadium seating as shown in (4d) maximizes vertical FOV and is an optimal design for immersive theater where it is desired to deliver a collective audience experience. Optimal immersion is also attained when floating or reclining in a level dome as shown in (4e), or when rows are vertically stacked in a 90-degree tilted dome as shown in (4f).
在站立配置(图 4a)中,观众在自然站立时的头部位置提供了最窄的垂直视野范围。为了增强沉浸感,观众需要向上看。稍微倾斜的座位(4b)能够为观众带来更宽广的视野范围。值得注意的是,前排座位应以更大的角度倾斜,以实现最佳的沉浸体验。如图(4c)所示,球幕的倾斜设计能够提升沉浸感,尤其是对剧院前排观众而言。增加球幕的倾斜角度并引入体育场式座位(4d),能够最大化垂直视野范围,这是沉浸式剧院设计中的最优选择,尤其适合希望为集体观众提供统一体验的场合。此外,在水平球幕中采用漂浮或倾斜的座位配置(4e),或者在 90 度倾斜的球幕中采用垂直堆叠的座位(4f),也能够达到极高的沉浸感。

Figure 4. Unidirectional dome designs including a) standing, b) seated, c) seated with dome tilt, d) stadium seating with dome tilt, e) floating or reclined viewing and f) vertical seating
Floating and vertical designs provide greater isolation from other audience members which is not desirable in a shared theater environment but is ideal for special applications such as digital wellness environment (floating design), flying theater or theme park dark ride (vertical design).
浮动和垂直座位设计提供了更高程度的隔离,这在共享的剧院环境中可能不是最佳选择,但对于特殊应用,如数字健康环境(浮动设计)、飞行影院或主题公园黑暗骑乘设施(垂直设计)来说,是理想的。
Note that tilting the dome towards the front of the theater allows the projection of foreground under the average viewer’s virtual “gravity horizon” line (Figure 5). In a level dome the spring line is the same as the horizon line. As the dome is tilted, foreground imagery under the horizon is revealed. In practice this virtual horizon can actually be placed anywhere to achieve a desired aesthetic and does not need to follow the audience’s gravity horizon, although the experience is the least disorienting when the two coincide. Since most of the audience is seated behind dome center, the “design eyepoint” can be lifted into the center of the seating deck, thereby lifting the horizon higher up onto the dome.
请注意,当球幕向剧院前方倾斜时,它允许在观众的虚拟“重力水平线”之下投影图像,从而创造出前景效果(见图 5)。在水平球幕中,这个水平线与地平线是一致的。随着球幕倾斜,原本位于地平线以下的图像内容得以展现在观众面前。实际上,这个虚拟的水平线可以根据美学需求放置在任意位置,不必严格遵循观众的重力水平线。尽管当两者一致时,观众的体验会更加稳定,不易感到迷失方向。由于大多数观众坐在球幕中心的后方,“设计视点”可以提升至座位甲板的中心位置,这样地平线就可以被提升至球幕的更高区域。

Figure 5. Variations in dome tilt and formation of a virtual “gravity horizon”
球幕仰角 Dome Elevation Angle
Another variable in screen design is the vertical elevation of the dome with respect to dome center (sometimes called “sweep” or “aperture angle”). Most planetarium domes are perfect hemispheres (180-degree vertical elevation) for legacy reasons. There are, however, advantages to constructing domes that are less than (6a) a hemisphere (Figure 6). Hypohemispheric dome screens have less surface area and thus tend to cost less, are easier to project onto using multiple projectors, and result in improved contrast as we shall see. The 165-degree dome (6b) was originally chosen by IMAX Corp. since it dropped the spherical center closer to the audience’s eye plane which minimizes geometric distortion as viewers move off-axis.
屏幕设计中的另一个重要因素是球幕相对于其中心的垂直仰角(有时称为“扫掠角”或“光圈角”)。根据传统,多数天文馆的球幕是完整的半球面,即具有 180 度的垂直仰角。然而,选择建造小于半球面的球幕(如图 6 中的 6a)也有其独特的优势。低半球球幕的屏幕面积较小,这不仅意味着成本更加经济,而且使用多个投影机进行投影也更为便捷,并且如后文所述,能够带来更佳的对比度效果。165 度的球幕(6b)最初由 IMAX 公司采用,其原因在于这种设计将球面中心降至接近观众视平面的位置,从而在观众的视线偏离中心轴线时,能够最大程度地减少几何畸变。

Figure 6. Variations in dome vertical elevation or aperture angle
弹簧线高度 Springline Height
Finally, we look at image field-of-view and placement of audiences within immersive spaces and placement of the springline. It is certainly possible to completely surround a viewer with complete sphere with no springline at all. Full-sphere theaters have been built for research such as the AlloSphere (KucheraMorin, et al., 2014), and have found applications in exhibitions and museums (Maceda, 2015; GOTO, 2016; Proctor, 2017).
最后,在沉浸式空间设计中,图像视野、观众的布局以及弹簧线(即球幕上与观众眼睛水平的虚拟线)的位置是关键因素。实际上,可以设计出完全没有弹簧线的球体,以完全包围观众,创造出全方位的沉浸体验。“全球”(full-sphere)剧院就是这样的例子,如 AlloSphere(Kuchera-Morin 等,2014 年),它已经在研究、展览和博物馆中得到了应用(Maceda,2015 年;GOTO,2016 年;Proctor,2017 年)。
However, the presence of a fully populated audience—whether seated or standing—limits a typical viewer’s unobstructed field of view to approximately a hemisphere. That is because, in a densely populated space, there are audience members sitting or standing in front of, behind, and to the sides of us which obscures our field of view. So, while we could extend the dome screen to the floor level or below, sightlines to these pixels—which are costly—are blocked for most audience members and do not appreciably add to the audience experience. Note that this primarily applies to performing arts theaters, concert venues and other densely populated venues.
然而,在观众完全坐满的场合——无论是坐着还是站着——观众的无障碍视野通常受限于半球面。这是因为在观众密集的空间中,前后左右都有观众,这限制了我们的视野。因此,尽管可以将球幕屏幕扩展到地板水平面或以下,但这些区域的像素对大多数观众来说是看不见的,而且增加这些像素的成本很高,对观众体验的提升并不显著。这一点尤其适用于表演艺术剧院、音乐会场所等观众密集的场所。
(Figure 7) shows the lowest sight lines for a seated audience terminate slightly above the heads of the audience (7a)—often referred to as the “eye plane.” This suggests placement of the springline no lower than what is visible for a majority of the audience.
图 7 展示了坐席观众的最低视线通常在头顶上方略微终止,这通常被称为“视平面”。这意味着弹簧线的位置不应低于观众可见的最低位置。

Figure 7. Sightline criteria for placement of springline and stage
A tilted dome demands a tilted eye-plane which is satisfied by stadium seating as shown in (7b). And when a stage is placed in the theater, if it is desirable for the audience to see the surface of the stage, then the front surface of the stage should not be much lower than the lowest visible springline as shown in (7c).
对于倾斜的球幕,需要一个与之相匹配的倾斜视平面,这可以通过设置体育场式座位来实现,如图 7b 所示。当剧院内设置有舞台时,如果希望观众能够看到舞台表面,那么舞台的前表面应不低于最低可见弹簧线,如图 7c 所示。
显示系统设计 Display System Design
Most dome theaters utilize one or more projectors illuminating a perforated aluminum or fabric dome screen. The projection system must seamlessly map a 1:1 aspect ratio Dome Master frame over the entire surface of the dome. Various projection display configurations are outlined below.
大多数球幕剧院依赖于一个或多个投影机来照亮具有穿孔设计的铝制或织物球幕屏幕。为了在球幕上呈现出无缝的视觉效果,投影系统必须能够将具有 1:1 宽高比的球幕母版帧精确映射到整个球幕屏幕上。以下是对不同投影显示配置的概述。
单投影机系统 Single Projector Systems
Single-projector systems utilize ultra-wide angle “fisheye” lenses to illuminate all or most of the dome screen. While high-brightness single-projector systems have been introduced for large domes including IMAX ® Dome, the limited resolution and brightness of a single projector can be an issue. Most high-resolution projectors have a 1.6:1, 1.78 or 1.9:1 aspect ratio which does not match the 1:1 fisheye fulldome format. This either requires vertically truncating the projection in the back of the theater or limiting the full fisheye frame to the vertical resolution (Figure 8).
单投影机系统采用超广角的“鱼眼镜头”来照亮整个或大部分的球幕屏幕。尽管已经出现了为大型球幕如 IMAX ®设计的高亮度单投影机系统,但单个投影机在分辨率和亮度上的限制有时仍可能成为问题。由于大多数高分辨率投影机的宽高比为 1.6:1、1.78 或 1.9:1,这与 1:1 的鱼眼 Fulldome 格式并不匹配。这可能导致需要在剧院后方垂直截断投影,或者限制鱼眼帧仅使用垂直分辨率(见图 8)。

Figure 8. Fisheye projection options for single projector with 1.9:1 aspect ratio
In general, most single-projector systems are found in smaller domes up to 10-12m in diameter and require 4K or 8K pixel resolution projectors for best results (Figure 9). The projector is ideally placed in the center of the dome (9a) but may be placed towards the front or rear of the dome with appropriate digital remapping and intensity gradient compensation. Single projector systems are simpler to setup and align and are therefore much better suited to portable dome applications. Dual fisheye configurations are also possible that use a second projector to fill in the truncated area as shown in (9b). A single edge-blend between two projectors is accomplished using geometric warping and soft-edge masking. Navitar (2019) publishes an excellent tutorial on single and dual projector dome systems.
通常,单投影机系统适用于直径在 10-12 米以下的较小球幕,并且为了达到最佳效果,通常需要配备 4K 或 8K 像素分辨率的投影机(见图 9)。理想情况下,投影机应放置在球幕的中心(9a),但也可以根据需要放置在球幕的前部或后部,并通过适当的数字重映射和强度梯度补偿来调整。单投影机系统的设置和对齐相对简单,因此它更适合便携式球幕的应用。如图(9b)所示,还可以采用双鱼眼配置,通过第二个投影机来补充被截断的区域。两个投影机之间的边缘混合通常是通过几何变形和软边遮罩技术实现的。Navitar(2019)提供了一份详尽的教程,涵盖了单投影机和双投影机球幕系统的相关知识。

Figure 9. Single, dual & six-projector edge-blended projector layout
多投影机边缘融合系统 Multi-Projector Edge-Blended Systems
Larger systems typically require multiple projectors to allow scaling of brightness and resolution. The majority of larger domes use multiple video projectors—up to two dozen or more in large-scale domes or specialized simulator applications. The projectors must sufficiently overlap to allow geometric alignment and soft-edge-blending to create a single seamless image covering the entire surface of the dome screen. Auto-alignment systems use one or more cameras in conjunction with structured light grids to compute u/v warping and blending maps to create a single seamless image from multiple overlapped projectors. Projectors are typically mounted around the periphery of the dome, projecting across the dome diameter (9c).
在大型系统中,为了提升亮度和分辨率,通常需要部署多个投影机。在大型球幕或专业模拟器的应用中,可能会使用多达 12 个甚至更多的视频投影机。为了在球幕屏幕上创建一个无缝的单一图像,这些投影机必须有足够的重叠区域,以便进行精确的几何对齐和软边混合。自动对齐系统通过结合一个或多个摄像头和结构化光栅,计算出必要的 U/V 变形和混合图,从而将多个重叠的投影机图像融合成一个统一的图像。这些投影机通常安装在球幕的周围,并跨越球幕直径进行投影(见图 9c)。
Note that the projector black level in blend regions is additive which introduces a distracting hard-edged fixed pattern in the black level which effectively reduces the sequential (on/off) system contrast. There are two solutions to restore black level uniformity. The first is to simply raise the black level outside of the blend regions—a simple solution for auto-edge-blend systems. This reduces black-level contrast to a lesser—but uniform—value across the frame. This approach works particularly well with projectors that have high sequential contrast (ideally without the use of dynamic contrast). But most large-venue projectors are limited to 2000:1 to 5000:1 sequential contrast a best, resulting in discernable loss of contrast. The second solution applies a physical optical mask somewhere in the optical train (outside of the projection lens in some systems) to create physical blends that function at all light levels. This is not an ideal solution however it can work very effectively. Emerging HDR (high-dynamic range) projectors promise to alleviate the need for masks or black-level boosting altogether.
需要注意的是,在混合区域中,不同投影机的黑位水平会发生累加,这会在黑色区域产生一个分散注意力的硬边固定图案,从而降低了顺序(开/关)系统的对比度。为了恢复黑位水平的均匀性,可以采取两种方法:
提高混合区域外的黑位水平,这是一种简单解决方案,用于自动边缘混合系统。这种方法会将整帧画面的对比度降低到一个较小但均匀的值。它特别适合于那些具有较高的顺序对比度(理想状态下不使用动态对比度)的投影机。然而,对于大多数大型场所的投影机而言,其顺序对比度通常限制在 2000:1 到 5000:1 之间,这会导致对比度的显著降低。
在光路中的某个位置应用物理光学掩模(在某些系统中位于投影镜头外),以实现在所有光照水平下都有效的物理混合。虽然这并非理想的解决方案,但它可以非常有效地工作。
新兴的 HDR(高动态范围)投影技术承诺将完全消除对掩模或黑色电平提升的需求,为球幕剧院带来更高的图像质量和对比度。
投影机和镜头 Projectors and Lenses
There are numerous choices for video projectors and lenses. The most popular choices of projection technology are single-chip or three-chip DLP (Texas Instrument’s Digital Light Processor), LCOS (liquid crystal on silicon) or organic LCD (liquid crystal display) spatial light modulators (SLMs), with DLP technology clearly leading in high-end projectors. Projectors with up to 4K horizontal pixels have been manufactured with some 8K projectors entering the market. Lower cost versions use “wobulators” to optically displace pixels by a fraction of a pixel into several positions per frame—each position a fraction of a pixel—to attain higher virtual frame rates.
在选择视频投影机和镜头时,有多种技术可供选择。目前市场上最受欢迎的投影技术包括单芯片或三芯片 DLP(数字光处理器,由德州仪器开发)、LCOS(硅上液晶)以及有机 LCD(液晶显示器)空间光调制器(SLMs)。在高端投影机市场中,DLP 技术占据了主导地位。市面上已经出现了具有高达 4K 水平像素的投影机,一些甚至达到了 8K 分辨率。而成本较低的版本则采用“摆动器”技术,通过光学手段将像素在每个帧的多个位置之间移动,每个位置显示像素的一部分,从而实现更高的虚拟帧速率。
Projector lenses are rated according to throw ratio. The throw ratio specifies the ratio between image width and throw distance. A 1.5:1 throw ratio, for instance, will produce an image one unit wide when the projector is placed 1.5 units of distance from the screen. Ultra-short throw lenses are now available with throw ratios of 0.3:1 or less. Precautions must be taken, however, to assure that the lens will properly focus across the curvature of the dome. It is rare that projector manufacturers publish this data—empirical testing is a must.
投影镜头的性能根据投射比率(throw ratio)来评定,投射比率定义了图像宽度与投影距离之间的比例关系。例如,1.5:1 的投射比率意味着当投影机距离屏幕 1.5 个单位距离时,能够投射出一个单位宽的图像。目前市场上已经出现了投射比率为 0.3:1 甚至更低的超短投镜头。然而,为了确保镜头能够在整个球幕的曲率上正确聚焦,必须采取适当的措施。由于很少有投影机制造商公布这些数据,因此实证测试变得尤为重要。
Sequential contrast is another parameter that must now be tested empirically. In recent years manufacturers have universally abandoned the ANSI intra-frame (checkerboard) contrast specification in favor of dynamic contrast specification. Dynamic contrast uses variable iris to throttle down projector brightness in low light scenes, achieving dynamic contrast ratios of 20,000:1 or more. Dynamic contrast cannot be used on multi-projector systems unless the dynamic parameters of all projectors are synchronized. And, because of the very wide field of view, dome imagery does not lend itself to dynamic contrast over the entire display. Most projectors allow dynamic contrast to be disabled, and some allow detailed control over parameters or synchronization of multiple projectors. Without dynamic contrast activated some projectors are left with sequential contrast of 500:1 or worse, so empirical evaluation of contrast is recommended.
顺序对比度是另一个需要通过实证测试来评估的参数。近年来,制造商们普遍放弃了 ANSI 帧内(棋盘格)对比度规范,转而使用动态对比度规范。动态对比度通过在低光场景中调整可变光圈来降低投影机的亮度,从而实现 20,000:1 或更高的对比度比率。然而,除非所有投影机的动态参数都同步,否则动态对比度不适用于多投影机系统。此外,由于球幕的视场非常宽,因此不适合在整个显示上使用动态对比度。大多数投影机允许关闭动态对比度,一些投影机甚至允许对参数进行详细控制,或同步多个投影机的动态参数。如果没有启用动态对比度,一些投影机的顺序对比度可能只有 500:1 或更低,因此进行对比度的实证评估是非常推荐的。
立体 3D Stereoscopic 3D
Stereoscopic 3D is also possible in digital domes; however, it is difficult to fabricate large polarizationpreserving projection screens with sufficient precision. Instead, active sequential LCD shutter glasses or optical wavelength multiplex imaging technology such as INFITEC ® (used by Dolby and others) is typically required for eye separation. There are also geometric compromises in 3D stereo imagery in domes with a large off-axis viewing volume that make it more difficult for audiences to fuse stereo images from obtuse viewing angles.
立体 3D 技术在数字球幕影院的应用是可行的,然而,制作大型且精度足够的偏振投影屏幕存在挑战。相反,通常因此,通常采用主动顺序液晶快门眼镜或光学波长复用成像技术,例如 INFITEC ®(被 Dolby 等公司采用),来实现左右眼的图像分离。在具有大偏轴观看体积的球幕中,立体 3D 图像可能会面临几何上的妥协,这使得观众从钝角视角融合立体图像变得更加困难。
图形服务器 Graphics Server
A basic multiprojector digital dome system is shown in (Figure 10). One or more central media servers takes dome master frames, breaks them into sub-frames with proper warping and feeds the sub-frames to multiple video projectors. Image source can either be realtime 3D rendered visuals or pre-rendered video streaming from SSD drives in high-speed RAID configuration. An outboard digital audio processor takes synchronized audio stems or multiple audio tracks in virtually any surround or 3D audio format and remaps them into the theater’s speaker array. A separate audio channel is provided for vibroacoustic transducers on the chairs, seating deck or floor.
图 10 展示了一个基础的多投影机数字球幕系统配置。中央媒体服务器接收球幕母版帧,将其分解成经过适当变形处理的子帧,并将这些子帧发送到多个视频投影机。图像源可以是实时 3D 渲染的视觉效果,或者是从高速 RAID 配置的 SSD 驱动器中流式传输的预渲染视频。外部数字音频处理器接收同步音频分轨组(stems)或多个音频轨道,并将其重新映射到剧院的扬声器阵列中,同时为椅子、座位甲板或地板上的振动声学换能器提供单独的音频通道。
The system includes an auto-alignment camera or array of cameras to capture projected structured light allowing the display to be geometrically aligned and automatically edge-blended using one of several commercial algorithms. Another array of cameras allows tracking of performers on the stage. The server plays video clips and 3D interactive scenes according to a cue list or timeline.
该系统包括一个自动对齐相机或相机阵列,用于捕捉投影的结构光,实现几何对齐,并使用商业算法自动进行边缘混合。另一个相机阵列用于跟踪舞台上的表演者,服务器根据提示列表(cue list)或时间线(timeline)播放视频剪辑和 3D 交互场景。
Multiple auxiliary video inputs fed by a video switcher allowing external video sources to access the display. The server accepts any planar or 360 format (rectangular, equirectangular 360, equipolar dome masters, cubic etc.) and remaps it into dome coordinates with low latency using 2D or 3D mapping. External inputs may be layered or mixed with internal realtime 3D or pre-rendered 360 video. In this manner the dome server becomes a dedicated remapping server allowing multiple outboard image generators including stage mapping computer, audience interactive computer, digital lighting server, GPU supercomputer, multiple VJ servers, live immersive camera feeds and other third-party sources to be seamlessly orchestrated to deliver powerful audience experiences.
视频切换器提供多个辅助视频输入,允许外部视频源接入显示系统。服务器能够接收任何平面或 360 度格式的输入(如矩形、等距圆柱 360 度投影、等极球幕母版、立方体等),并使用 2D 或 3D 映射技术以低延迟将其重新映射到球幕坐标。外部输入可以与内部的实时 3D 或预渲染 360 视频层叠或混合。这样,球幕服务器充当了一个专用的重映射服务器,使得多个外部图像生成器(包括舞台映射计算机、观众交互计算机、数字照明服务器、GPU 超级计算机、多个 VJ 服务器、实时沉浸式摄影机流和其他第三方源)能够无缝协同工作,共同创造出色的观众体验。
A show control interface allows coordination with lighting, motion control rigging, stage props, musical instruments, audio mixers, sensors and other peripheral devices through SMPTE timecode, MIDI, DMX and related control interfaces.
一个演出控制界面允许通过 SMPTE 时间码、MIDI、DMX 和相关控制接口,与照明、运动控制系统、舞台道具、乐器、音频混音器、传感器和其他外围设备进行协同控制。

Figure 10. Basic multiprojector display system for live-performance dome theater
图像亮度 Image Brightness
With their large surface areas, digital dome projection screens are hungry for light. In cinema systems image “brightness” or luminance is often measured in US units of foot-Lamberts (fL). The corresponding SI units for luminance are candela/m2 and are often referred to as nits (1.0 fL = 3.426 candela/m2). The SMPTE standard ST 431-1: 2006 for digital cinema requires screen luminance of 14 fL or 48 nits for full white (SMPTE, 2006). Projection domes, whether film or digital, rarely achieve these brightness levels. The Giant Screen Cinema Association’s DIGSS 2.0 requirements for giant screen theaters requires at least 3 fL for full white with an aspirational goal of 6 fL (DIGSS, 2018). Table 1 lists required projector luminous flux (in lumens) to achieve various luminance values (in both fL and nits) for a range of dome diameters.
数字球幕投影屏幕因其庞大的面积,对光输出的需求非常高。在电影系统中,图像的亮度通常以英尺朗伯(fL)为单位进行测量,而其对应的国际单位是坎德拉每平方米,即尼特(1.0 fL 等于 3.426 尼特)。根据 SMPTE 标准 ST 431-1: 2006,数字电影的屏幕亮度应达到 14 fL 或 48 尼特(全白)。然而,无论是电影还是数字投影,球幕很少达到这些亮度水平。巨幕电影协会的 DIGSS 2.0 标准对巨幕剧院的要求是全白至少 3 fL,期望目标是 6 fL。为了实现一系列球幕直径所需的各种亮度值,表 1 列出了所需的投影机光通量(以流明计)。

Table 1. Projector luminous flux (in lumens) versus screen luminance (fL) for various dome diameters. Assumes screen reflectance of 0.2, dome elevation 165 degrees and projector overlap factor 0.8
For live performance with stage lights and other ambient lighting it is highly recommended to have a minimum luminance of 4 fL. While higher luminance is always desirable, it is often not economically feasible. For instance, achieving 4 fL in a relatively small 15m dome (seating capacity 120) can be accomplished using three 30k lumen projectors. However, achieving the same light level in a 60m dome (seating capacity 2500) requires 44 ea. of those same projectors. Even using the brightest commercially available projector (75,000 lumens) still requires 18 ea. projectors. It is easy to see the temptation to economize by a) reducing the number of projectors and decreasing image luminance, b) reducing the number of projectors and using a higher screen reflectance to maintain the same image luminance (which sacrifices contrast as we shall see) or c) reducing the vertical elevation (aperture angle) of the screen thereby allowing a reduction in the number of projectors without sacrificing either luminance or contrast (although there may be loss in vertical resolution depending on projection geometry).
在现场表演中,尤其是有舞台灯光和其他环境照明的情况下,强烈建议至少有 4 fL 的最低亮度。尽管更高的亮度总是更受欢迎,但往往因成本考虑而不可行。例如,在一个较小的可容纳 120 人的 15 米球幕中实现 4 fL 的亮度,可以使用三台 30,000 流明的投影机。然而,在一个容纳 2500 人的 60 米球幕中实现相同的亮度水平,则需要 44 台这样的的投影机。即使使用最亮的商用投影机(75,000 流明),仍然需要 18 台。很容易看出,人们会因为以下原因而诱惑于节省开支:a) 减少投影仪的数量并降低图像亮度;b) 减少投影仪的数量,同时使用更高反射率的屏幕来保持相同的图像亮度(这会牺牲对比度,正如下文所述);或者 c) 减少屏幕的垂直仰角(光圈角度),从而在不牺牲亮度或对比度的情况下减少投影仪的数量(尽管根据投影几何学,可能会损失垂直分辨率)。
Note that projectors can be double-stacked and aligned using internal warping, thereby halving the required number of unique server channels. Double-stacking is common in the industry and most projectionists can quickly manually align projector stacks.
值得注意的是,投影机可以通过内部变形对齐进行双层堆叠,这样可以将所需的独特服务器通道数量减半。双层堆叠在行业中很常见,大多数放映员都能够快速手动对准投影机堆叠。
图像分辨率 Image Resolution
Image resolution is another critical measure when designing dome displays (or any display, for that matter). Note that, since the introduction of digital projection, display application engineers now typically express resolution in resolvable pixels (pixel resolution) rather than the optical engineering definition of resolution which is based on resolvable line-pairs. Resolution in digital domes is expressed in pixels per degree or—quite often—in the number of pixels per 180 degrees. This is because the standard image map for domes—known as the Dome Master—is an equidistant polar (fisheye) frame with vertical and horizontal axes both representing 180 degrees (from springline to springline). The same 180-degree dome master frame is mapped to the entire dome, regardless of dome elevation (aperture) or dome tilt. Digital domes have an interesting property. If one stands at dome center, domes with the same number of pixels will appear to have the same pixel resolution regardless of scale. Resolution is measured by pixels per degree, a factor that remains constant with dome diameter. Of course, the pixel size itself does scale with dome diameter, since the number of pixels around the circumference remains fixed as the circumference increases. If we design theaters with seating or standing areas measured in fractions of dome radius, then our pixel resolution design criteria will also scale with dome diameter.
图像分辨率是设计球幕显示器(或任何类型的显示器)时的一个至关重要的考量因素。随着数字投影技术的普及,显示应用工程师通常使用可分辨像素数(像素分辨率)来描述分辨率,而不是传统的基于可分辨线对数的光学工程定义。在数字球幕中,分辨率通常以每度像素数(或经常以每 180 度像素数)来表示。这是因为球幕的标准图像映射格式——称为球幕母版——是一个等距极坐标(鱼眼)帧,其中垂直和水平轴都代表 180 度的视野范围(从弹簧线到弹簧线)。在这种映射方式下,相同的 180 度球幕母版帧被投射到整个球幕上,不论球幕的仰角(光圈)或倾斜角度如何。数字球幕的一个独特特性是,如果观众站在球幕中心,那么具有相同像素数的不同规模的球幕在视觉上会呈现出相同的像素分辨率。这是因为分辨率是以每度像素数来衡量的,而这一因素会随着球幕直径的增加而保持恒定。

Figure 11. Eye-limited resolution as a driver for pixel resolution at various viewing locations expressed as a fraction of dome radius (scales with dome size), with resultant pixel width for various diameters
The acuity of the human eye with 20/20 vision is approximately one arcminute. Dome resolutions resulting from requirement of eye-limited resolution at four different viewing locations (Figure 11). These viewing locations (front seat, dome center, rear center and rear seat) are expressed in units of dome radius, therefore the resolution requirements are scale-invariant with respect to dome diameter.
拥有正常视力 20/20 的人眼敏锐度大约为一个弧分。球幕的分辨率是根据四个不同的观看位置(如图 11 所示)的视觉极限分辨率要求来确定的。这些观看位置包括前排座位、球幕中心、后排中心和后排座位,它们都是以球幕半径的单位来表示的,因此分辨率的要求与球幕直径的比例是恒定的。
Large-scale digital planetariums and giant screen domes typically employ an industry standard of 4K x 4K dome master resolution with a small number of 8K x 8K systems deployed. As shown, a resolution of 5.4K is required to match the resolution of the human eye from the rear-most seat. An 8K dome display falls below eye-limited resolution just behind dome center. And if eye-limited resolution is desired at the front row—assumed to be 0.5 radii in front of dome center—a 22k dome master is required.
大型数字天文馆和巨幕球幕普遍采用行业标准的 4K x 4K 分辨率作为球幕母版,同时也部署了少量 8K x 8K 系统。如图所示,为了与最远座位观众的人眼分辨率相匹配,需要的分辨率是 5.4K。而在球幕中心后方,一个 8K 球幕显示器的分辨率略低于视觉极限分辨率。如果想要在前排——假设在球幕中心前方 0.5 半径的位置——达到视觉极限分辨率,那么所需的球幕母版分辨率将是 22K。
This raises the question of the need for eye-limited resolution. Projection systems have evolved to have very high pixel fill factors—up to 92% which minimizes the “screen door” effect when viewing the projected image at closer distance than the eye-limited resolution limit. From experience, the eye is very tolerant to a factor of two (or more) drop in pixel resolution below eye-limited resolution. So an 8K dome master will likely be sufficient into the foreseeable future. Such is not the case with LED displays which have a very low fill factor, allowing the eye to easily discern individual pixels when under the eye-limited resolution threshold. So, even in the case where 8K content is being projected on an LED screen, the pixel resolution will want to be near eye-limited resolution to prevent screen-door artifacts.
随着投影系统的发展,它们已经能够实现非常高的像素填充因子,最高可达 92%。这一进步在接近视觉极限分辨率的距离观看投影图像时,显著减少了“屏门”效应的影响。实际上,人眼对于低于视觉极限分辨率两个(或更多)数量级的像素分辨率下降表现出了很高的容忍度。因此,一个 8K 球幕母版在可预见的未来应该已经足够满足需求。然而,对于 LED 显示器来说,情况就有所不同了。它们的像素填充因子相对较低,当分辨率低于人眼的分辨率阈值时,人眼可以轻易地分辨出单个像素。因此,即使在 LED 屏幕上播放 8K 内容,也期望像素分辨率尽可能接近视觉极限分辨率,以防止出现屏门伪影,确保观众获得最佳的观看体验。
交叉反射对比度 Crossbounce Contrast
An often-overlooked factor in dome theater design is the effect of scattered light or “crossbounce” (also called inter-reflection)—that is, light from projected images that scatters back onto the dome instead of into the eyes of the audience causing loss of contrast. This is one of the most common, difficult to solve and often most misunderstood limitations of projection dome image quality. Unlike standard cinema screens that are substantially flat, dome screens are concave, allowing them to reflect not only projected light which forms the primary image, but light from the primary image that scatters back onto the dome itself. The effect is a reduction of image contrast due to an increase in ambient light that limits the blackest black that can be obtained.
在球幕剧院设计中,一个常被忽视的因素是散射光或“交叉反射”(也称为互反射)的影响。这种效应指的是,光线不是直接进入观众的眼睛,而是从投影图像中散射回球幕,这会导致对比度的损失。这是影响投影球幕图像质量的一个常见、难以解决且经常被误解的问题。与基本上是平面的标准电影院屏幕不同,球幕屏幕是凹面的,这使得它们不仅能反射形成主要图像的投影光线,还能反射从主要图像本身散射回球幕的光线。这种效果会因为环境光的增加而导致可获得的最黑黑色减少,进而降低图像的对比度。
Interestingly, crossbounce contrast is highly dependent upon the nature of the projected dome imagery. Bright images such as white clouds – as one might expect when looking up at a daytime sky—can substantially raise the black level over the entire dome screen. Should such an image also contain dark areas, such as looking into the mouth of a cave or dark shadows under trees or rocks, these dark areas of the image will appear quite washed out. On the other hand, sparse imagery against black—such as a starry night sky—produces very little scattered light. In this case contrast is likely limited by the projector’s sequential contrast (on/off black level) or ANSI contrast (typically limited by scatter in lens and optics) and not contrast loss due to crossbounce.
值得注意的是,交叉反射对比度与投影球幕图像的性质高度相关。明亮的图像,如白云,能够显著提高整个球幕屏幕上的黑位水平,这正是人们在白天仰望天空时所期望的效果。但如果这样的图像中包含暗区,比如洞穴入口、树下或岩石下的暗阴影,这些暗区会显得很有褪色(washed out)感。相反,黑色背景下的稀疏图像,如繁星点点的夜空,产生的散射光非常少。在这种情况下,对比度可能更多地受到投影机的顺序对比度(开/关黑位水平)或 ANSI 对比度(通常受到镜头和光学元件散射的限制)的影响,而不是由于交叉反射导致的对比度损失。
In (Figure 12) we illustrate crossbounce by tracing a single ray of light with illuminance L. This ray strikes a grey Lambertian screen (which scatters equally in all directions) with reflectance r. The resulting image illuminance seen by an observer is therefore proportional to r. Crossbounce light is attenuated a second time relative to the primary reflected image. Therefore, the intensity of a crossbounce ray varies proportional to r2 as r is varied. The overall crossbounce contrast ratio (r / r2) varies approximately as 1/r. So as the reflectance is lowered, crossbounce contrast, which is inversely proportional, increases.
在图 12 中,我们通过追踪具有照度 L 的单束光线来说明交叉反射现象。这束光线击中了一个具有反射率 r 的灰色朗伯体屏幕(该屏幕在所有方向上均匀散射光线)。因此,观察者看到的图像照度与 r 成正比。交叉反射光相对于主要反射图像再次减弱。随着 r 的变化,交叉反射光的强度与 r ²成比例变化。整体交叉反射对比度比率(r / r ²)大约与 1/r 成反比。因此,随着反射率的降低,与之成反比的交叉反射对比度会增加。

Figure 12. Crossbounce of incident light ray with luminance (L) onto screen with reflectance (r)
This simple model neglects image shape and intensity variation and more complex specular properties of dome screens. The real-world factors contributing to crossbounce on arbitrary images are complex and can be solved through numeric modeling (Hazleton, 2016).
这个简单模型忽略了图像形状和强度变化,以及球幕屏幕更复杂的镜面特性。在实际情况中,影响任意图像上交叉反射的因素是复杂的,可以通过数值建模解决(Hazleton, 2016)。
In practice a standard method for measuring the crossbounce contrast ratio is to project a black and white checkerboard over the entire dome surface and measure the ratio of luminance between the white squares and the black squares (Lantz, 2004).
在实践中,测量交叉反射对比度比率的标准方法是在整个球幕表面上投影黑白棋盘格,并测量白色方块与黑色方块之间的亮度比率(Lantz, 2004)。
Checkerboard contrast can be derived using integrating sphere theory (Ganter, 2012) and is given by:
C = 2 (1 + A/2) / A
Where A is the amplification factor given by A = 1 / (1 – r/2 * (1-cos(Ø/2))− 1
Where r is the dome screen reflectance (also called gain) and Ø is the vertical dome elevation.
棋盘格对比度可以用积分球理论(Ganter,2012)推导出来,如下:
其中,
Checkerboard contrast as a function of dome gain and vertical elevation is shown in Table 2. Many traditional planetariums utilize hemispheric screens (elevation of 180 degrees) with a gain of 0.65 which works well for star projection where the imagery is mostly black with pinpoint stars and planets. However, this results in a checkerboard contrast of less than 4:1 which is concerning for cinematic content creators as it severely limits image quality for brighter content. In comparison, digital cinema systems are generally expected to maintain checkerboard contrast of 100:1 or more.
表 2 显示了棋盘格对比度作为球幕增益和垂直仰角的函数。许多传统天文馆使用半球形屏幕(仰角为 180 度)和 0.65 的增益,这种配置对于星象投影十分理想,因为图像主要由黑色背景上的星星和行星组成。然而,这种配置的棋盘格对比度通常不到 4:1,对于电影内容创作者来说,这限制了更亮内容的图像质量,而数字电影系统通常期望保持 100:1 或更高的棋盘格对比度。

Table 2. Checkerboard contrast vs dome gain and vertical dome elevation
Lowering screen gain and decreasing elevation angle can drastically improve the crossbounce contrast ratio. Halving the screen reflectance approximately doubles checkerboard contrast. IMAX ® Dome screens designed for cinema have typical reflectance of 0.28 or less. The Vulcan Holodome, a spherical theater designed by Vortex Immersion Media, Inc., used a screen with reflectance of 0.13. This dark grey screen decreased image brightness nearly by a factor of eight requiring much brighter projectors to compensate for the optical loss. Unfortunately, many existing digital domes were originally constructed for star projection with a screen reflectance exceeding 0.6 which is entirely unsuitable for cinematic content. Even the best projection dome screens would be hard pressed to achieve 100:1 checkerboard contrast.
为了显著改善交叉反射对比度比率,可以降低屏幕增益和减小仰角。例如,将屏幕的反射率减半,大约可以将棋盘格对比度提高一倍。专为电影设计的 IMAX ®球幕屏幕通常具有 0.28 或更低的反射率。由 Vortex Immersion Media, Inc.设计的球形剧院 Vulcan Holodome 使用了反射率为 0.13 的屏幕。这种深灰色屏幕将图像亮度降低了近八倍,需要更亮的投影机来补偿光学损失。然而,许多现有的数字球幕最初是为星象投影而建造的,屏幕反射率超过 0.6,这完全不适合电影内容的展示。即使是性能最好的投影球幕屏幕,也很难达到 100:1 的棋盘格对比度。
A dome with elevation angel of 155 degrees would need to have a reflectance of 0.025 to achieve 100:1 contrast which would attenuate projected light by a factor of 40. Clearly, if digital domes are to achieve their full potential to faithfully reproduce real or simulated imagery, another solution must ultimately be found.
对于一个仰角为 155 度的球幕来说,为了实现 100:1 的对比度,需要有 0.025 的反射率,这将导致投影光减弱 40 倍。显然,如果要让数字球幕充分发挥其再现真实或模拟图像的全部潜力,需要寻找其他的解决方案。
Another method for increasing crossbounce contrast is to increase screen gain. Basically, a high-gain screen concentrates reflected light into the specular direction rather than scattering light equally in all directions. If the projector is a single-lens design placed near dome center, a high-gain dome screen will concentrate reflected light back down towards the projector—and thus, concentrate reflected light into the audience seating area. High gain dome screens have been manufactured for IMAX ® Ridefilm and specialty simulator systems. However, while this approach works for smaller single-projector systems it does not scale up to multi-projector edge-blended systems in theaters since image brightness of overlapped projectors in blend regions varies according to viewer position within the theater. Simulator systems have a single viewer with a small “viewing volume” and therefore can compensate for viewer position.
提高交叉反射对比度的另一种策略是增加屏幕增益。高增益屏幕将反射光集中到镜面方向,而不是在所有方向上均匀散射。在单镜头设计的投影系统中,如果投影机放置在球幕中心附近,高增益球幕屏幕可以将反射光集中回投影机,从而将光线集中到观众区域。为 IMAX ® Ridefilm 和专业模拟器系统制造了高增益球幕屏幕。然而,尽管这种方法适用于较小的单投影机系统,但它并不适合剧院中使用多投影机边缘混合的系统,因为在剧院内不同观众位置的重叠投影机的图像亮度会有所不同。模拟器系统由于只有一个观众和一个较小的“观察体积”,因此可以对观众位置进行补偿。而大型球幕剧院则需要多个投影机来扩展亮度和分辨率,以满足观众的需求。
Larger dome theaters require multiple projectors to scale up brightness and resolution.
Novel approaches to compensating for crossbounce have been summarized by R öß ner, Christensen, and Ganter (2016) and include real-time computational “reverse radiometry” (Bimber, Grundhofer, Zeidler, Danch & Kapakos, 2006), dome screens with microstructures to provide selective gain (Bublitz, D. 2011), camera based approaches (Habe 2007) or photochromic screens that can selectively subtract light (Takeda, 2016). These approaches have not been applied to large-scale digital domes as they are either highly computationally intensive, expensive to manufacture or not suitable for large-scale dome theaters.
R öß ner、Christensen 和 Ganter(2016)总结了补偿交叉反射的新方法,包括实时计算“逆辐射度学”(Bimber, Grundhofer, Zeidler, Danch & Kapakos, 2006),采用微结构以提供选择性增益的球幕屏幕(Bublitz, D. 2011),基于相机的方法(Habe 2007),或可以有选择地减光的光致变色屏幕(Takeda, 2016)。这些方法尚未应用于大型数字球幕,因为它们要么计算强度高,要么制造成本高,要么不适合大型球幕剧院。
The ultimate digital dome display will likely require a departure away from projected display technology altogether.
最终,数字球幕显示器可能需要完全脱离投影显示技术。
LED 显示系统 LED Display Systems
The use of discrete LED panels has the potential advantage of greatly reducing cross-dome scatter, opening the door to high-dynamic range (HDR) dome theaters (Kleiman, 2019; Campos, 2019; Brennesholtz, 2019). LED’s are also brighter, easily exceeding the 55 nits requirement for digital cinema resulting in better perceived color saturation. Recent innovations in LED domes include perforated panels for sound transmissivity and custom fabricated panels for spatial pixel uniformity over the spherical surface.
使用独立式 LED 面板有潜力显著降低球幕内的散射现象,这一技术进步为高动态范围(HDR)球幕影院的实现铺平了道路(Kleiman, 2019; Campos, 2019; Brennesholtz, 2019)。LED 光源的亮度更高,轻松达到数字电影所要求的 55 尼特以上亮度标准,进而提升色彩饱和度的感知效果。近期在 LED 球幕技术上的创新包括:开发了带有穿孔设计以实现声音传输的面板,以及用于确保球形表面空间像素分布均匀的定制面板。
The primary barrier to entry for LED domes is cost, which is bound to come down as LED technology advances. LED screens and other emissive surfaces (OLED, printed polymers) are likely the future of this format. Dome theaters should be designed to be future-proof and accommodate potential upgrade to emissive screens.
LED 球幕技术的普及面临的主要障碍在于其成本。随着 LED 技术的不断进步,预计这一成本将会逐渐降低。LED 屏幕以及其他自发光显示技术(如 OLED、印刷聚合物)有望成为球幕影院未来的发展趋势。因此,球幕影院的设计应当具备前瞻性,以便未来能够适应可能的自发光屏幕技术升级。
As shown in Figure 10, a 60m diameter 22k pixel dome requires 4.4mm pixel pitch to be eye-limited resolution—well within the capabilities of current discrete LED panel design.
如图 10 所示,一个直径 60 米的 22K 像素球幕需要 4.4mm 像素间距才能达到视觉极限分辨率——这完全在当前独立 LED 面板设计的能力范围内。
舞台投影映射 Stage Projection Mapping
Projection mapping is a powerful tool to transform any spatial environment where ambient light levels can be controlled. Textures can be projected onto walls, floors, furniture, and more. In the case of a live stage performance, large digital sets can be computer cut or 3D printed to exactly resemble objects projected within the immersive dome scene.
投影映射技术是一种强大的工具,能够对任何可以控制环境光线水平的空间进行转换。这项技术允许我们将纹理投影到墙壁、地板、家具等表面上。在实时的舞台表演中,大型的数字布景可以通过计算机切割或 3D 打印技术制作出来,这与在沉浸式球幕场景中投影的对象有着异曲同工之妙。
The “holy grail” of live performance immersive design is where a vast spatial scene on the dome comes seamlessly into the room and onto an LED or projection-mapped stage. The effect is working when the eye cannot tell where the dome ends and the stage begins. This effectively opens a portal bridging the virtual cyber world and the real physical world (Zhang, Shen, Zhang, Zhu & Ma, 2019).
当球幕上展示的宏大空间场景无缝地延伸至房间内,并投影到使用 LED 或投影映射技术的舞台时,现场表演沉浸式设计的“圣杯”就实现了。当观众无法区分球幕的边界与舞台的起点时,这种效果便得以完美呈现。这不仅创造了一种视觉上的奇迹,也象征着虚拟网络世界与现实物理世界之间的界限被打破(Zhang, Shen, Zhang, Zhu & Ma, 2019)。
These two worlds become seamlessly stitched together when, for instance, a sun (projected onto the dome) arcs across the sky and the shadows of stage props (projected onto the stage) shift position, tracking the sun. A performer then lifts a glowing orb and the light rays illuminate 3D objects in the cyber world (projected onto the dome), seemingly emanating from the orb which is being tracked across the stage. The performer then walks on a treadmill while the 3D projected imagery on the dome scrolls past. Another powerful effect is the tracking of performers and use of video projectors as stage lights. By placing light onto the performers only we can avoid spillage of ambient stage lighting onto projected
scenes. We can also project textures onto moving performers.
例如,当球幕上投影的太阳仿佛在天空中移动,而投影到舞台上的道具阴影也随之改变位置时,这两个世界便实现了无缝的融合。表演者随后举起一个发光的球体,其光线照亮了投影在球幕上的 3D 物体,而这些光线似乎正是来自于舞台上实际追踪的球体。接着,表演者在跑步机上行走,而球幕上的 3D 投影图像则随之滚动,创造出一种动态的视觉效果。此外,将视频投影技术用作舞台灯光也是一种强大的效果。通过仅将光线投射到表演者身上,我们可以避免环境舞台照明对投影场景的干扰。我们甚至可以将纹理投影到移动的表演者身上,进一步增强表演的沉浸感和视觉冲击力。
音频系统 Audio Systems
There are numerous surround sound configurations utilized in dome theaters, from 5.1 surround, 7.1 and 11.1 to custom 23.2 systems and beyond (Gaston, 2008). Three-dimensional audio processing is also coming into vogue. Standard commercial systems may conform to THX, be modeled after open source formats such as ambisonics or proprietary formats such as Dolby Atmos, Auro 3D and DTS. It is highly desirable to place audio in spatial configurations to match immersive visuals. More sophisticated wavefield synthesis techniques such as IOSONO and Auro 3D Max offer holographic sound reproduction allowing virtual audio sources to appear anywhere within the dome space.
球幕剧院的音频系统设计采用了多种环绕声配置,从传统的 5.1 环绕声、7.1 和 11.1 系统,到更为定制化的 23.2 声道系统等(Gaston, 2008)。三维音频处理技术也变得越来越流行。标准的商业音频系统可能会遵循 THX 标准,或者采用开源格式如 Ambisonics,或者使用专有格式如 Dolby Atmos、Auro 3D 和 DTS。理想情况下,音频应该被放置在一个与沉浸式视觉效果相匹配的空间配置中。更高级的波场合成技术,例如 IOSONO 和 Auro 3D Max,能够提供全息声音再现,使得虚拟音频源能够在球幕空间的任何位置出现。
The primary goal of a modern digital dome audio system should be the ability to accept nearly any set of audio stems with directional information or any set of surround channels and re-map the audio to the venue’s speaker configuration. Vibroacoustic transducers on the floor or chairs can also transmit low frequency vibration through the sense of touch. This is best provided by a separately mixed channel rather than deriving it from the sub bass channel.
现代数字球幕音频系统的主要目标应该是,能够接受几乎任何带有方向信息的音频分轨组(stems)或任何环绕声通道集,并将音频重新映射到场馆的扬声器配置中。此外,地板或椅子上的振动声学换能器可以提供触觉上的低频振动,这种效果最好是通过单独混合的音频通道来实现,而不是从次低音通道派生。

Figure 13. Multipurpose event dome configurations. © 2019 Vortex Immersion Media, Inc. Used with permission
数字球幕的应用形式 DIGITAL DOME APPLICATIONS
剧院类型 Theater Types
Two primary theater types are recommended for standardization as arts and entertainment venues: Multipurpose domes and CineTheater ™ domes.
作为艺术和娱乐场所标准化,推荐两种主要的剧院类型:多功能球幕和 CineTheater ™球幕。
多功能球幕 Multipurpose Domes
The first and most popular design for mobile domes is a simple non-tilted dome with level floor and removable seats. This architecture is a multipurpose design that serves as a digitally themed ballroom or event center and is suitable for banquets, dance parties, concerts and simple theatrical productions (Figure 13). Provisions must be made for storage of chairs, tables bars and other equipment that may be swapped in and out according to event type.
移动球幕的最经典且广受欢迎的设计是采用非倾斜球幕的形式,配备平坦的地板和可移动的座位。这种建筑是一个多功能设计,可以作为数字化主题的舞厅,也可以作为活动中心,适用于各种场合,如宴会、舞会、音乐会以及基础的戏剧制作(见图 13)。为了适应不同类型的活动,必须为椅子、桌子、酒吧以及其他可能需要根据活动性质进行更换的设备提供充足的存储空间。
CineTheater ™
The optimal design for shared theatrical productions is the CineTheater ™ with tilted springline, stadium seating deck and projection mapped (or LED) stage (Figure 14). Such a theater can maximize the illusion of a seamless merging of real and virtual worlds.
对于追求最佳共享戏剧制作体验的设计,CineTheater ™是一个理想的选择。它具备倾斜的弹簧线设计、类似体育场的座位布局以及投影映射(或 LED)舞台(见图 14)。这样的剧院设计能够最大化实现真实世界与虚拟世界的无缝融合。
There are substantial challenges to the seamless integration of video backdrops and set pieces in dome theaters since there is no theatrical proscenium to hide lights or drop scrims, set backdrops, props and rigging. These effects must instead be raised from underneath the stage or dropped from overhead through moving ports in the dome screen. A number of innovations in theatrical staging are now being developed and standardized allowing productions to be easily distributed to a network of CineTheaters ™.
在球幕剧院中,将视频背景和布景道具无缝集成是一项挑战,因为缺乏传统戏剧舞台的框架来隐藏灯光设备或进行幕布的升降、背景和道具的设置。这些效果需要通过舞台下方的机械装置升起,或者通过球幕屏幕上的移动端口从上方降下。目前,许多创新的戏剧舞台技术正在开发和标准化中,这些技术将使得戏剧制作能够轻松地分发到 CineTheaters ™网络中的各个剧院。

Figure 14. Mobile Vortex CineTheater ™ design. © 2019 Vortex Immersion Media, Inc. Used with permission
沉浸式体验 Immersive Experiences
Digital domes are general purpose immersive environment that are extremely flexible and can be used in a variety of ways to deliver sit-down, stand-up and walk-through experiences.
数字球幕是一种通用的沉浸式环境,非常灵活,可以用多种方式提供坐下、站立和步行穿越的体验。
360 度电影体验 360 Cinema Experiences
Domes are best known for delivering amazing 360 cinematic journeys, from IMAX films to thrill rides and visual music entertainment. Like VR, 360 cinemas can evoke deep empathy and create breathtaking spectacles.
球幕最为人所知的是提供令人惊叹的 360 度电影之旅,其类别包括 IMAX 电影、惊险游乐设施、视觉音乐娱乐等。与虚拟现实(VR)一样,360 度电影院可以唤起深刻的共鸣。并创造令人叹为观止的壮观场面。
现场 CineTheater ™表演 Live CineTheater ™ Performances
Live performers can step into and interact with projected immersive environments which can serve as digital sets. CineTheaters ™ have features that support live performances including projection mapped stage and props, video-based lighting, talent facilities, and more.
现场表演者可以步入投影的沉浸式环境并与之互动,这些环境可以作为数字布景。CineTheaters ™具有支持现场表演的特点,包括投影映射的舞台和道具、基于视频的照明、演员设施等。
Broadway, Cirque and large-scale theatrical stage shows rely on extensive physical sets, props, and expensive stages to create massive spectacles for attendees. As discussed by Passy (2013), mounting a Broadway show typically costs
百老汇、太阳马戏团以及大型戏剧舞台表演以其宏伟的物理布景、道具和昂贵的舞台设计而闻名,这些元素共同为观众打造了一场视觉盛宴。正如 Passy(2013)所指出的,举办一场百老汇演出的成本通常在 500 万到 2500 万美元之间。而在高端表演中,例如太阳马戏团的 KA 表演,他们投资了 1.35 亿美元建造了一个定制剧院,并拥有移动舞台。该演出本身动用了 72 名表演者,制作成本高达 3000 万美元(Fink, 2004)。
CineTheaters ™ require a one-time investment in AV equipment which—similar to cinema— utilize live-action cinematography or visual effects to create the illusion of nearly any scene imaginable. But instead of viewing the scene within a rectangular frame on a wall, the digital dome wraps the environment around audiences to evoke a strong sense-of-presence. Live characters can enter the virtual environment and command it, effectively commanding the nervous systems of the audience.
CineTheaters ™则采用一次性投资的音视频设备,类似于电影院,利用实景摄影或视觉效果来创造几乎任何可以想象的场景的幻觉。但与在墙上的矩形框架内观看场景不同,数字球幕技术将观众包裹在一个全景的环境中,创造出强烈的沉浸感和临场感。现场演员可以进入这个虚拟环境并与之作交互,从而有效地引导观众的感官体验。
While visual effects can be expensive, once produced, a CineTheater ™ show can be rapidly and inexpensively mounted from a hard drive along with a handful of simple projection-mapped set pieces and minimal rigging. The cast is reduced because some of the performers can be rendered into pixels instead of being physically present for each performance.
虽然视觉效果的制作可能成本高昂,但一旦完成,CineTheater ™的表演可以从硬盘上快速且经济地安装,仅需一些简单的投影映射布景和最少的舞台设备。由于部分表演者可以以像素的形式呈现,而不是每次都亲自到场,因此演员阵容可以相应减少。
The CineTheater ™ brings cirque-scale spectacle into regional dome performing arts theaters with relatively inexpensive show mounting costs.
CineTheater ™以其相对较低的演出安装成本,为地区性的球幕表演艺术剧院带来了太阳马戏团级别的视觉奇观。
环境视觉效果 Ambient Visuals
A wide variety of events can be enhanced using 360 environmental backdrops. Cocktail parties, banquets, and gatherings of all kinds can benefit from abstract immersive scenes such as starry night sky, beaches, palaces, cityscapes, popular art and more. Scenes can be static or slowly changing with looping visuals (i.e. moving clouds, trees blowing in wind, birds soaring overhead). This is sometimes referred to as “digital wallpaper.”
360 度的环境背景能够显著提升各种活动的体验。无论是鸡尾酒会、宴会还是各类聚会,都能从沉浸式的抽象场景中获益,这些场景可能包括繁星闪烁的夜空、沙滩海岸、宏伟宫殿、城市天际线、流行艺术等。这些场景可以是静态的,也可以是缓慢变化的循环视觉,例如移动的云彩、随风摇曳的树木、或是头顶飞过的鸟群。这种动态的视觉体验有时被称为“数字壁纸”。
互动体验 Interactive Experiences
The dome can serve as a group immersive portal into virtual worlds including interactive games, esports, and metaverse-based events. Walk-through immersive environments can be created that include projection mapping gesture-based textures onto real-world sets and objects.
球幕技术还可以作为集体沉浸式门户,带领用户进入包括互动游戏、电子竞技和基于元宇宙的虚拟活动的世界。它可以创造出可步行穿越的沉浸式环境,通过将基于手势的纹理投影映射到现实世界的布景和物体上,增强现实世界的体验。
虚拟世界体验 Virtual World Experiences
Massively multi-user online virtual environments and games (MMO’s) such as Second Life, Fortnite and World of Warcraft have attracted millions of users. Virtual world participants don avatar personalities and navigate through 3D shopping malls, nightclubs, games, and other user-generated virtual worlds. Avatars can work, eat, sleep, meet one another, make love, get married, raise children, purchase real estate, attend game shows, change gender, and act out fantasies. Users of MMO’s build personalities, skills and attributes over time, just as in the real world.
大型多人在线虚拟环境和游戏(MMOs),如《模拟人生》《堡垒之夜》《魔兽世界》,已经吸引了数百万用户。在这些虚拟世界中,参与者扮演虚拟角色,他们在 3D 购物中心、夜总会、游戏和其他用户生成的虚拟空间中导航。虚拟角色可以体验到工作、吃饭、睡觉、社交、恋爱、结婚、抚养孩子、购买房地产、参与游戏节目、改变性别和实现各种幻想。随着时间的推移,MMO 的用户会在游戏中建立自己的个性、技能和属性,就如同在现实世界中一样。
Virtual worlds including user generated environments created in MMO’s can ported into physical worlds as walk-through SAR environments using 3D-printed objects from the virtual world.
包括 MMO 中用户生成的环境在内的虚拟世界,可以通过使用虚拟世界中的 3D 打印物体,作为步行穿越的空间增强现实(SAR)环境导入到物理世界中。
讲座和演示 Lectures and Presentations
Slide-show presentations cannot compete with the power of immersive intelligent spaces. Panelists and presenters can teleport audiences into virtually any place on Earth or beyond, including rare ecosystems, astronomical datasets, microscopic domains, or virtual worlds. Executive presentations can command vast amount of information and visual simulations. Self-help speakers can add dramatizations and experiential elements.
传统的幻灯片演示在沉浸式智能空间所带来的体验面前显得苍白无力。在这样的环境中,小组成员和演讲者可以带领观众穿越时空,探索地球上的稀有生态系统、天文数据集、微观世界甚至是虚拟世界。这种沉浸式的体验使得高管演示能够以前所未有的方式呈现大量信息和视觉模拟,而自助演讲者则可以通过增加戏剧性和体验元素来吸引观众。
戏剧体验 Theatrical Experiences
Performers or dancers can create live interactive art on the dome and audiences can interact with dome content with user interfaces such as mobile phones, wands, game controllers, motion-captured gestures, or speech. The resulting “digital Cirque” performances can simulate massive theatrical spectacles that would otherwise be costly to fabricate. Virtual characters and sets can transcend reality as they are not bound by physical limitation. AI-driven “synthespians” can access personal data to personalize the audience experience for those who opt in.
表演者或舞者可以在球幕上创作现场互动艺术,观众可以通过各种用户界面,如移动电话、魔杖、游戏控制器、动作捕捉手势或语音,与球幕内容进行互动。这种“数字马戏团”式的表演能够模拟大规模的戏剧奇观,而成本却远低于传统方式。虚拟角色和布景能够超越现实世界的物理限制,而 AI 驱动的“合成演员”甚至可以根据个人数据为观众提供个性化的体验。
现场音乐会和舞蹈音乐活动 Live Concerts and Dance Music Events
Video jockeys (VJ’s) can take over the dome and perform to live music, bringing stand-up concerts and dance music events to an entirely new level. Advanced dome re-mapping servers support real-time frame capture and re-mapping allowing VJ’s to directly drive the dome using their own VJ server and content. Advanced AI image generation allows real-time style transfer and other artistic effects. The powerful nature of 360 visuals elevates the VJ to equal status with the DJ. Gesture-driven “dome jockey” interfaces go further to allow a single performer to command both musical and visual performance from a single console.
影像骑师(VJ)可以利用球幕技术,将现场音乐表演、站立式音乐会、舞蹈音乐活动提升到一个全新的层次。先进的球幕重映射服务器支持实时帧捕捉和重映射,使得 VJ 能够使用自己的服务器和内容直接控制球幕。AI 图像生成技术的进步,如实时风格迁移和其他艺术效果,进一步增强了 VJ 的表演能力。360 度视觉效果的强大影响力使得 VJ 的地位与 DJ 不相上下。而手势驱动的“球幕骑师”界面则允许单个表演者从单一控制台指挥音乐和视觉表演。
球幕广播和 360 度多播 Domecasting and 360 Multicasting
Global audiences can be engaged in live events (Figure 15) through 360 multicasting (15a) and domecasting (15b). In these scenarios a 360 camera captures a scene, either within an immersion dome – such as a concert performance—or other live event and streams the event into other domes or headsets. In domecasting, the remote domes can enhance the experience with the addition of a local moderator or “shoutcaster” and additional video streams and information channels which can be displayed around the dome to augment the 360 “God’s eye” view.
通过 360 度多播(图 15a)和球幕广播(图 15b),全球观众可以参与到现场活动中来。在这些场景中,360 度摄像机捕捉一个场景,无论是在沉浸式球幕内举行的音乐会表演还是其他现场活动,并将活动流式传输到其他球幕或头显中。在球幕广播中,远程球幕可以通过增加本地主持人或“喊话者”以及额外的视频流和信息频道来增强体验,这些内容可以显示在球幕周围,为观众提供一个 360 度的“上帝视角”。

Figure 15. Streaming options for live immersive media experiences
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
案例研究 CASE STUDIES
To illustrate trends and state-of-the art in the industry here are a handful of real-world case studies across several application areas from pioneering companies making strides in this field.
为了阐述这一行业中的趋势和最新进展,以下是来自几家在该领域取得突破的先锋公司的几个实际案例研究,涵盖了多个应用领域。
体验营销 Experiential Marketing
Big brands want to dazzle audiences with memorable experiences and are willing to pay handsomely for it. Experiential marketing continues to be an on-ramp for newcomers in immersive media and an important proving ground for new tech coming out of the labs. These case studies demonstrate the power of immersive media to deliver unique and compelling brand experiences.
大品牌致力于通过难忘的体验来吸引观众,并为此不惜支付高额费用。体验营销不仅是沉浸式媒体新手的入门途径,也是新技术实验的重要平台。以下案例研究展示了沉浸式媒体如何提供独特且吸引人的品牌体验。
诺基亚实验室球幕 Nokia Lab Dome
The Nokia Lab immersion dome and digital projections were created by VIM for the 2012 SXSW festival in association with High Beam Events and featured a tri-dome translucent air-supported design with three 12m diameter dome sections. Air-supported structures require revolving doors or air-locks for ingress and egress that maintain the required positive inflation pressure. This project used an unusual projection architecture with a dome server built upon an interactive engine by Derivative called TouchDesigner which provided real-time 3D animation capability. Experiences included a variety of immersive environments created in cooperation with Pixomondo (water, igloo blocks, rotating brand elements, and a “Tron-like” world), slowly rotating real-time 3D models of Nokia’s new phone and real-time simulated northern lights that users could interact with using a touch table. Live moderated Twitter feeds were also projected onto the dome and a VJ performed visuals in real-time with live band. The VJ visuals initially filled the entire dome but induced vertigo in some attendees, so the art was scaled down and projected onto the screen of the 3D phone model which was positioned to appear floating above the band.
诺基亚实验室的沉浸式球幕和数字投影是由 Vortex Immersion Media (VIM) 为 2012 年 SXSW 音乐节与 High Beam Events 合作创建的。该项目特色是一个三球幕半透明气动设计,每个球幕直径达 12 米。为了维持所需的正压充气压力,气动结构需要设置旋转门或气闸。该项目采用了一种非传统的投影架构,球幕服务器建立在 Derivative 公司的 TouchDesigner 交互引擎之上,该引擎提供了实时 3D 动画的能力。体验包括与 Pixomondo 合作创造的多种沉浸式环境(如水域、圆顶小屋、旋转的品牌元素和一个类似“电子世界争霸”的世界),以及缓慢旋转的诺基亚新款手机的实时 3D 模型。用户还可以通过触摸桌与之互动,体验实时模拟的北极光。现场主持的 Twitter feed 也被投影在球幕上,VJ 与现场乐队实时表演视觉效果。最初,VJ 视觉效果填满了整个球幕,但这在一些参与者中引起了眩晕,因此艺术作品的尺寸被缩小,并投影到 3D 手机模型的屏幕上,该模型被放置在乐队上方,给人一种漂浮的视觉效果。
Twitter Feeds
This and other translucent dome projects identified the need to both reduce ambient light inside and outside the structure and increase projector brightness (Figure 16). In (16a), the luminous bar washed out projections from the interior, while (16b) shows how exterior street lights (along with automobile headlights) interfered with the experience inside the dome. Text on the dome also had to be constantly rotated so it appeared correctly to viewers both inside and outside the dome.
这个半透明球幕以及其他类似项目,揭示了需要减少内部和外部结构环境光并增加投影机亮度的需求(见图 16)。图 16a 中,发光的酒吧从内部“洗掉”了投影效果,而图 16b 显示了外部街道灯光(及汽车前灯)如何干扰球幕内的体验。球幕上的文本也必须不断旋转,以便对球幕内外的观众正确显示。

Figure 16. Nokia Lab tri-dome featuring real-time 3D graphics, live music stage with VJ and live
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
超级碗 Super Bowl
The NFL Super Bowl Host Committee commissioned an 18m inflatable “Stratosphere” dome structure in 2012 to serve the nearly one million visitors anticipated at the Super Bowl Village, a temporary entertainment zone in downtown Indianapolis. Microsoft’s Xbox came in and sponsored the dome. 3D animated visuals were projected onto the dome interior and exterior.
2012 年,NFL 超级碗主办委员会委托制作了一个 18 米高的充气“Stratosphere”球幕结构,用于在印第安纳波利斯市中心的超级碗村临时娱乐区服务预计近一百万游客。微软的 Xbox 赞助了这个球幕,3D 动画视觉效果被投影到球幕的内部和外部。
A second Xbox dome venue was commissioned for Super Bowl 2013 (Figure 17). The interior included a Kinect interaction station allowing visitors to throw simulated Mardi Gras beads, levitate a playing field with running football players or spin Xbox brand elements around on the dome. The 15 m opaque vinyl covered negative pressure dome was seamlessly projection-mapped on both the exterior and interior. The exterior featured rotating brand elements and provided visibility from many points along the Mississippi river. Snorkel doors reduced the amount of ambient sunlight entering the dome as audiences entered allowing a more controlled ambient light environment. Lighting on interior signage was also delivered using projection mapping to reduce interior ambient light. A smaller 7m dome was attached to the main structure which housed a photo booth experience as visitors exited the venue. Approximately 10,000 visitors passed through the dome over several days.
2013 年超级碗再次委托制作了第二个 Xbox 球幕场馆(见图 17)。内部包括了一个 Kinect 互动站,让游客可以扔模拟的狂欢节珠子,使一个有球员在跑步的足球场悬浮在空中,或在球幕上旋转 Xbox 品牌元素。这个 15 米高的不透明乙烯基覆盖的负压球幕在内外都进行了无缝的投影映射。外部特色是旋转的品牌元素,在密西西比河沿岸的许多位置都能看到。潜望门(snorkel doors)减少了进入球幕时的环境光量,使观众进入时能够更好地控制环境光线。内部标识的照明也使用投影映射来减少内部环境光。一个较小的 7 米球幕连接在主体结构上,作为游客离开场馆时的拍照体验区。大约有 10,000 名游客在几天内进入球幕内部体验。

Figure 17. Xbox Dome at Super Bowl XLVIII in New Orleans
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
4D 叙事 4D Storytelling
Storytelling journeys use immersive media to amplify the experience.
叙事之旅使用沉浸式媒体来放大体验。
EMC 世界球幕 EMC World Domes
EMC ² commissioned an 11-meter tilted tradeshow dome and a series of 5-minute “thrill rides” into the world of electronic information (Figure 18).
EMC ² 定制了一个 11 米高的倾斜贸易展览球幕和一系列 5 分钟的“惊险之旅”,使观众进入电子信息的世界(图 18)。

Figure 18. EMC World 2013 exterior and interior dome
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
In 2012 VIM worked with EMC brand managers to craft a story to fly audiences through a “dataverse” showing how private and public clouds could be trusted to serve corporations. In 2013 the same team created a Tron-like world that we navigated in a “dataship” while that illustrated tools for IT security and governance. Both pieces included animation with live-action elements and visual effects produced with support from Pixomondo, an Academy award-winning visual effects house that won three Emmys for their dragon animations on HBO’s Game of Thrones (2011-2019) and an Oscar for its work on Martin Scorsese’s Hugo (2011).
在 2012 年,Vortex Immersion Media (VIM) 与 EMC 品牌经理携手合作,打造了一个引人入胜的故事,带领观众飞越一个充满“数据宇宙”的环境,展示了私人和公共云服务如何为公司提供可靠的服务。2013 年,同一个团队再次创造了一个类似电影《Tron》的沉浸式世界,观众在一艘“数据船”上航行,体验了 IT 安全和治理工具的强大功能。这两个作品都包括了动画和实景元素,以及由 Pixomondo 支持的视觉特效。Pixomondo 是一家屡获殊荣的视觉特效公司,因其在 HBO 的《权力的游戏》(2011-2019)中的龙动画赢得了三个艾美奖,并因其在马丁·斯科塞斯的《雨果》(2011)中的卓越工作而获得奥斯卡奖。
康斯坦丁球幕 Constantine Dome
NBC Universal commissioned the creation of an original experience for the launch of Constantine (2014), a TV series based on the DC Comics character and 2005 film starring Keanu Reeves. The 3.5 minute animated themed experience was produced in six weeks and included a flythrough of a creepy sanatorium and collision with a ghost train while combating demons. Synchronized 4D effects included wind and strobes. The show was screened 1,200 times over five days.
到了 2014 年,NBC 环球委托 VIM 为基于 DC 漫画角色和 2005 年基努·里维斯主演电影改编的电视系列剧《康斯坦丁》创造一个原创体验。这个 3.5 分钟的动画主题体验在短短六周内制作完成,让观众体验了一次飞越恐怖疗养院的旅程,并在与鬼火车相撞的同时与恶魔战斗。为了增强沉浸感,体验中还加入了同步的 4D 效果,如风效和频闪灯。这个节目在五天的活动期间共放映了 1,200 次,展示了 VIM 在紧迫时间表下创造高质量沉浸式体验的能力。
沉浸式餐饮 Immersive Dining
The Stella Artois’ Sensorium immersive pop-up dining experience in Toronto, Canada featured a sense of taste, sight, smell, sound and touch throughout a five-course meal by celebrated chef Richie Farina. Show in in Figure 20, the event sold out an entire month of servings at $125/plate prior to opening.
在加拿大多伦多,Stella Artois 的 Sensorium 沉浸式快闪餐饮体验通过由著名厨师 Richie Farina 精心准备的五道菜,为顾客带来了一场全方位的感官盛宴,包括味觉、视觉、嗅觉、听觉和触觉的沉浸体验。如图 20 所示,该活动在开业前一个月的所有座位便以 125 美元一份的价格销售一空。

Figure 19. Stella Sensorium in Toronto, Canada
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
艺术与娱乐 Arts and Entertainment
A number of immersive arts and entertainment projects have been pioneered in digital planetariums over the years (Lantz, 2009). However, only a small number of dedicated arts and entertainment immersion dome venues exist at this time.
多年来,在数字天文馆中已经开创了许多沉浸式艺术和娱乐项目(Lantz, 2009)。然而,目前存在的专门用于艺术和娱乐的沉浸式球幕场馆还是少数。
Vortex Dome LA
The Vortex Dome, established in 2010 at Los Angeles Center Studios in downtown Los Angeles has served as a public showcase and testbed for immersive mixed-media productions including; 360 ballet, live painting, musicals, EDM experiences, concerts, solo performances, 360 cinema and more (Lantz, 2018). The 15m dome accommodates up to 130 seated or 240 standing and continues to serve as an immersive media development, R&D lab, and showcase studio.
2010 年在洛杉矶市中心成立的 Vortex Dome,已经成为包括 360 度芭蕾、现场绘画、音乐剧、EDM 体验、音乐会、独奏表演、360 度电影等沉浸式多媒体制作的公共展示和试验场(Lantz, 2018)。这个 15 米高的球幕能够容纳多达 130 个坐着的或 240 个站立的观众,并且持续作为一个沉浸式媒体开发、研发实验室和展示工作室的角色。
Productions at the Vortex Dome include; Migrations (2011) with visual artist Audri Phillips and composer Winter Lazerus, Blue Apple ballet with visuals by Audri Phillips and choreographer Stefan Wenta, BollyDoll by artist and singer Amrita Sen and composer Anthony Marinelli, Deep, Deeper Deepest with visuals by Audri Phillips and space music artist Steve Roach, Refractor Piano performed by Peter Manning Robinson with visuals by Hana Kim and Klaus Hoch (multicast in 360 VR), a performance by the band Braves with visuals by Brianna Amore, and Ceremony and Mesmerica visual music performances with musician, James Hood.
Vortex Dome 的制作涵盖了多种艺术形式,包括与视觉艺术家 Audri Phillips 和作曲家 Winter Lazerus 合作的 Migrations(2011)、由 Audri Phillips 提供视觉效果的 Blue Apple 芭蕾、由艺术家和歌手 Amrita Sen 和作曲家 Anthony Marinelli 创作的 BollyDoll、由 Audri Phillips 提供视觉效果,太空音乐家 Steve Roach 创作的 Deep, Deeper Deepest、由 Peter Manning Robinson 演奏,Hana Kim 和 Klaus Hoch 提供视觉效果的 Refractor Piano(在 360 VR 中多播)、由 Brianna Amore 提供视觉效果的乐队 Braves 的表演,以及与音乐家 James Hood 合作的 Ceremony 和 Mesmerica 视觉音乐表演。
Other productions explored in the Vortex Dome including traditional film screenings, performance art, EDM events, poetry readings, experimental art, sound and light meditations, workshops, panels, symposia, immersive film festivals, immersive dining experiences, a Teletubbies premiere party for Nickelodean and more. Next-generation interactive performances are now in production including Audri Phillip’s Robot Prayers.
Vortex Dome 还探索了包括传统电影放映、表演艺术、EDM 活动、诗歌朗诵、实验艺术、声音和光线冥想、研讨会、小组讨论、研讨会、沉浸式电影节、沉浸式餐饮体验、尼克频道的 Teletubbies 首映派对等多种形式的活动。下一代互动表演目前正在制作中,包括 Audri Phillip 的 Robot Prayers。
Video shoots in The Votex Dome include an MTV pilot for a global multicast dance party, two 60 Minutes episodes, a scene from the TV series Castle, an independent sci-fi film, music videos, documentary interviews with legendary jazz musician Wayne Shorter, with rapper Chuck-D from Public Enemy, and most recently a futuristic set for Jay Z’s music video called Family Fued with Beyonc é. Events are regularly live-streamed in 360 video for viewing in VR headsets.
Vortex Dome 也是视频拍摄的热门地点,包括 MTV 全球多播舞蹈派对的试播、两集《60 分钟》、电视剧《Castle》的一幕、一部独立科幻电影、音乐视频、与传奇爵士音乐家 Wayne Shorter 的纪录片采访、与来自 Public Enemy 的说唱歌手 Chuck-D 的采访,最近则是为 Jay Z 与 Beyonc é的音乐视频 Family Fued 制作的未来主义场景。活动定期以 360 视频直播,供在 VR 头显中观看。
SAT
Montreal’s SAT (Soci é t é des arts technologiques) in CANADA features the Satosph è re, an 18 m projection dome with unique multipurpose design dedicated to artistic creation and visualization events (Husband & Barsalo, 2005). The theater opened in October 2011 and has hosted numerous fine arts performances. SAT is one of the world’s first permanent dedicated arts and entertainment dome theaters. The successful business model includes an innovation lab, restaurant and bar making it a frequented local destination in addition to a successful immersive theater.
位于加拿大蒙特利尔的 SAT(Soci é t é des arts technologiques)拥有一个名为 Satosph è re 的 18 米投影球幕,这是一个专为艺术创作和可视化活动设计的多功能场所(Husband & Barsalo,2005)。自 2011 年 10 月开业以来,该剧院已经举办了众多的美术表演。SAT 是世界上第一个永久性的专门艺术和娱乐球幕剧院。其成功的商业模式融合了一个创新实验室、餐厅和酒吧,使其成为当地人频繁光顾的目的地,同时也是一个成功的沉浸式剧院。
Wisdome
And in late 2018 the Wisdome Immersive Art Park opened in Los Angeles’ Arts District featuring two mobile projection domes and three exhibition domes. The venue is open daily featuring the works of visionary artist Android Jones and holds special events such as tribute bands, sound healing, screenings and more.
2018 年底,Wisdome 沉浸式艺术公园在洛杉矶艺术区开业,设有两个移动投影球幕和三个展览球幕。该场馆每天开放,展示视觉艺术家 Android Jones 的作品,并举办特别活动,如致敬乐队、声音疗愈、放映等。
IAIA Digital Dome
The Digital Dome at IAIA (Institute for American Indian Art) is dedicated to exploring “new applications for creative expression, scientific and technical exploration, and the merging of art and technology.” It features a 7m suspended dome that can rotate from a level dome to 90-degree tilt, a 15.1 surround sound system and up to 55 removable seats. The dome has featured numerous art installations and screenings.
IAIA(美国印第安艺术研究所)的数字球幕致力于探索“创意表达、科学技术探索以及艺术与技术的融合的新应用”。它拥有一个 7 米高的悬挂球幕,可以从水平球幕旋转至 90 度倾斜,配备了 15.1 环绕声系统以及多达 55 个可移动座位。该球幕已经举办了众多艺术装置和放映活动。
Pharos
Pharos was a temporary mobile dome show featuring Childish Gambino (aka Donald Glover) located in the Joshua Tree desert. Gambino performed five shows over three days in a 49m inflatable dome theater with a 2500-person capacity. The Microsoft-backed production team led by animators Mikael Gustafsson and Alejandro Crow spent two weeks in The Vortex Dome in downtown LA preparing the show which was VJ’d live from dual Unity servers outputting 4K x 4K and re-mapped onto a 12-projector display at 60 fps. Billboard raved that “…the dome was truly the highlight of the night,” and Hip-Hop DX called it “… the most innovative live show this decade.” The second Pharos dome in New Zealand featured five Unreal servers feeding a single re-mapping server, with one rendering the sides of a hemicube.
Pharos 是一个临时的移动球幕表演,由 Childish Gambino(即唐纳德·格洛弗)在约书亚树沙漠中举办。Gambino 在三天内进行了五场演出,地点是一个 49 米高的充气球幕剧院,可容纳 2500 人。由动画师 Mikael Gustafsson 和 Alejandro Crow 领导的微软支持的制作团队在洛杉矶市中心的 Vortex Dome 花了两周时间准备这场演出,由双 Unity 服务器实时 VJ 输出 4K x 4K,并重新映射到 12 个投影机显示,以 60 fps 的速度播放。Billboard 称赞“……球幕确实是当晚的亮点”,Hip-Hop DX 称之为“……本十年最具创新性的现场演出”。在新西兰的第二个 Pharos 球幕则由五个 Unreal 服务器向单一的重新映射服务器提供内容,其中一个渲染了半立方体的侧面。
The largest dome VIM has delivered was a 60m inflatable structure at the Los Angeles Coliseum produced by The Production Club for a well-known game designer. Over 3,000 people enjoyed the world’s most immersive EDM party with performances by Skrillex, Diplo and DJ Snake.
VIM 交付的最大的球幕是一个 60 米高的充气结构,位于洛杉矶纪念体育场,由 The Production Club 为一位知名的游戏设计师制作。超过 3000 人享受了世界上最沉浸的 EDM 派对,演出嘉宾包括 Skrillex、Diplo 和 DJ Snake。
Mesmerica 360
Mesmerica is an extremely successful cross-platform production including a live performance with James Hood (still running at the Vortex Dome LA), a fulldome film for distribution (currently playing in over 23 planetariums and IMAX ® Laser Domes) and a companion VR experience. Directed by Michael Saul, it features James Hood’s cheerful music set to world-class fulldome art. The show is expressly designed to activate positive brain states and a sense of wellbeing. Contributors include Jonathan A.N. Fisher, PhD., an Assistant Professor and the Director of the Neurosensory Engineering Lab in the Department of Physiology at New York Medical College who provided brain visualizations from Neurodome ® and Mark Subbarao, PhD from the Adler Planetarium in Chicago who provided a galactic zoom and brain sequence renders. Other artists include Brianna Amore, Ken Scott, John Banks and Tatiana Plakhova.
Mesmerica 是一个跨平台制作的杰出成就,它包括一场持续在洛杉矶 Vortex Dome 上演的现场表演,一部 Fulldome 电影(目前在 23 个以上的天文馆和 IMAX ®激光球幕上映),以及一个配套的虚拟现实(VR)体验。该作品由 Michael Saul 执导,结合了 James Hood 的欢快音乐和一流的 Fulldome 艺术作品。这个节目专门设计来激发积极的心态和幸福感。项目的贡献者包括 Jonathan A.N. Fisher 博士,他是纽约医学院生理学系的助理教授兼神经感知工程实验室的主任,他通过 Neurodome ®提供了大脑的可视化内容,以及来自芝加哥阿德勒天文馆的 Mark Subbarao 博士,他贡献了银河缩放和大脑序列的渲染。其他艺术家包括 Brianna Amore、Ken Scott、John Banks 和 Tatiana Plakhova。
其他案例研究 Other Case Studies
保罗·艾伦的全息球幕 Paul Allen’s Holodome
In late 2015, a Request for Proposals (RFP) from Paul Allen’s Vulcan was released seeking proposals for a “Holodeck.” The resulting system used four each 4K laser projectors aimed into a semi-spherical screen driven by full-sphere equirectangular movies from TouchDesigner playback and remapping server and two separate Unity servers. Vulcan introduced the Holodome into the MoPop museum in Seattle in early 2019 [3].
2015 年末,保罗·艾伦的 Vulcan 公司发布了一份提案请求(RFP),寻求构建一个“全息甲板”的创意方案。最终选定的系统包括四台 4K 激光投影机,它们对准一个半球形屏幕,放映由 TouchDesigner 播放器、重映射服务器以及两个独立的 Unity 服务器驱动的 Fulldome 等距圆柱映射电影。2019 年初,Vulcan 在西雅图的 MoPop 博物馆引入了这个全息球幕系统。
环球天地 Universal Sphere
The Universal Sphere opened in April 2019 in the lobby of Philadelphia’s new Comcast Technology Center. The 34’ diameter dome theater features a free 7-minute film called The Power of I about the origin and power of ideas produced by Steven Spielberg in cooperation with DreamWorks Animation, Universal Parks and Resorts and Comcast Labs.
2019 年 4 月,“环球天地”(Universal Sphere)在费城新 Comcast 技术中心的大堂开业。这个直径为 34 英尺的球幕剧院主要放映的是一部免费的 7 分钟电影《我的力量》,讲述了由史蒂文·斯皮尔伯格与梦工厂动画、环球公园和度假村以及 Comcast 实验室合作制作的关于思想起源和力量的故事。
The theater, two years in the making, was designed by Foster + Partners, a London-based architectural firm led by architect Norman Foster. It is ADA-compliant with wheelchair access and closed captioning devices. The development team rented the Fels Planetarium at The Franklin Institute Science Museum as part of their show development.
这个剧院经过两年的精心制作,由伦敦的建筑公司 Foster + Partners 设计,该公司由著名建筑师诺曼·福斯特领导。剧院符合 ADA(美国残疾人法案)标准,设有无障碍轮椅通道和闭路字幕设备。开发团队曾租用富兰克林研究所科学博物馆的 Fels 天文馆作为他们节目开发的一部分。
Comcast CEO Brian Roberts explained “The first 50 years for our company were about finance and entrepreneurship. If we’re going to thrive for the next 50 years, it’s going to be about innovation, media, and technology” (Stephens, 2019).
Comcast 首席执行官布莱恩·罗伯茨表示:“我们公司的前 50 年是关于财务和创业的。如果我们想在未来 50 年继续繁荣发展,那么它将关乎创新、媒体和技术”(Stephens,2019)。
未来 THE FUTURE
Immersion domes have been called the “next big thing” for live immersive performances [Csathy 2018]. Two companies have announced major brick-and-mortar developments that promise to kick off a rapidly expanding ecosystem of immersion dome theaters.
球幕沉浸式体验被誉为现场沉浸式表演的“下一个大事件”(Csathy 2018)。已有两家公司宣布了重大的实体发展计划,承诺将推动一个快速扩展的沉浸式球幕剧院生态系统。
Vortex DomePlex
Vortex Immersion Media has announced a new project in development called the Vortex DomePlex (Roettgers, 2019) (Figure 20). This immersive arts and entertainment complex includes a 2500 seat performing arts CineTheater ™, two 1,000-capacity Vortex Dome events domes and smaller dome spaces for retail, experiential lounges and VR arcades. The facility is designed as a major exhibition venue for stand-up, sit-down and walk-through immersive experiences.
Vortex Immersion Media 宣布了一个名为 Vortex DomePlex 的创新项目(Roettgers, 2019)(见图 20)。这个沉浸式艺术和娱乐的综合设施将包括一个能容纳 2500 人的 CineTheater ™表演艺术剧院,两个能容纳 1000 人的 Vortex Dome 活动球幕,以及多个小型球幕空间,用于零售、体验休息室和 VR 游戏。该设施的目标是成为一个集站立式、坐式和步行穿越的沉浸式体验于一体的主要展览场所。

Figure 20. Vortex DomePlex conceptual rendering
Source: © 2019 Vortex Immersion Media, Inc. Used with permission
The CineTheater ™ features an advanced projection-mapped elevator stage, video-tracked theatrical lighting and 3D sound including infrasound and vibroacoustic chairs. The theater will be fitted with a multicamera 360 video capture and streaming system for domecasting and VR multicasting. An MMO metaverse version of the venue will encourage remote preand post-event engagement and community building around a wide range of entertainment themes.
CineTheater ™将配备先进的投影映射电梯舞台、视频跟踪剧场照明,以及包括次声波和振动声学椅子在内的 3D 音效系统。剧院还将安装多摄像头 360 视频捕捉和流媒体系统,用于球幕广播和 VR 多播。此外,一个 MMO 元宇宙版本的场馆将促进远程的预活动和后活动参与,以及围绕广泛的娱乐主题建立社区。
One of the Vortex Domes will serve as an after-party venue allowing story extension. It will be equipped with photonic go-go booths, elevator stages for DJ’s (dome jockey), full audience tracking and multi-VJ performance consoles. The open architecture design will allow artists to perform from their own servers which can be installed on site. Another Vortex Dome will serve as flex space to expand storytelling worlds into walk-through immersive experiences, host travelling exhibits and more.
Vortex DomePlex 的其中一个 Vortex Dome 将作为一个派对场所,允许故事在其中延伸。它将配备光子摇摆舞厅、DJ 的电梯舞台(球幕骑师)、全场跟踪和多 VJ 表演控制台。开放式的架构设计将使艺术家能够通过现场安装的自己的服务器进行表演。另一个 Vortex Dome 将作为一个灵活的空间,将故事世界扩展到步行穿越的沉浸式体验中,用于举办巡回展览等活动。
Vortex’s business model is designed to be flexible, accommodating an ever-evolving technical, artistic and consumer market. The company seeks to present family programming in the daytime, “digital cirque” entertainment residencies in the evening and interactive electronic entertainment for late night.
Vortex 的商业模式旨在保持灵活性和多样性,以适应不断变化的技术、艺术和消费市场。该公司计划在日间提供适合家庭的节目,在晚上提供“数字马戏团”风格的娱乐驻地,并在深夜提供互动电子娱乐,以满足不同时间段的观众需求。
MSG Sphere
Madison Square Garden Entertainment has announced the MSG SPHERE, a 17,500 seat LED-based digital dome to be constructed in Las Vegas and London. The project – currently estimated at $1.7b, features a 152m LED-mapped spherical exterior and an interior LED dome screen. The project is currently under construction in Las Vegas.
麦迪逊广场花园娱乐公司宣布了 MSG SPHERE,这是一个 17,500 座位的基于 LED 的数字球幕,将在拉斯维加斯和伦敦建造。该项目目前估计耗资 17 亿美元,特色是一个 152 米 LED 映射的球形外观和一个室内 LED 球幕屏幕。该项目目前正在拉斯维加斯建设中。
未来研究 FUTURE RESEARCH
Immersion domes suggest a wide range of academic and commercial research opportunities spanning neuroscience and cognitive science, computer graphics and interactive techniques.
沉浸式球幕技术揭示了广泛的学术研究和商业应用的可能性,覆盖了神经科学、认知科学、计算机图形学以及交互技术等多个领域。
Cognitive research is needed to better understand the effect of immersive media on consciousness and it’s use in storytelling and delivering impact. It is possible that unique brain states such as the pilomotor reflex and the release of pleasurable brain chemicals such a dopamine, serotonin, oxytocin and endorphins could be optimized in highly immersive and interactive experiences (Salimpoor, Benovoy, Larcher, Dagher & Zatorre, 2011; Manninen, et al. 2017). And how can audience biometrics combined with AI be used to optimize these responses?
为了深入理解沉浸式媒体对意识的影响,以及其在叙事和传递影响力方面的应用,我们需要进行更多认知方面的研究。在高度沉浸和互动的体验中,可能能够优化独特的大脑状态,例如引发毛发直立反射,以及释放多巴胺、血清素、催产素和内啡肽等愉悦的神经化学物质(Salimpoor, Benovoy, Larcher, Dagher & Zatorre, 2011; Manninen, et al. 2017)。结合观众的生物特征数据与人工智能技术,我们如何优化这些反应?
The economics of dome theaters allows the installation of GPU supercomputers for real-time raytracing and deep learning algorithms. What new experiences can be offered with such computing power? If we can specifically identify audience members and—through their opting in—can access their “big data” social media assets, how can AI use these assets to enhance the audience experience? And how can AI be used to assist the interpretation of music through immersive visuals, or vice versa?
球幕剧院的经济学使得可以安装 GPU 超级计算机来进行实时光线追踪和运行深度学习算法。这样的计算能力能够为我们提供哪些全新的体验?如果我们能够特别识别观众成员——通过他们的选择——并访问他们的“大数据”社交媒体资产,人工智能如何利用这些资产来增强观众体验?人工智能又如何协助通过沉浸式视觉效果来解释音乐,或者反过来?
Rendering, animation and computing algorithms are often biased towards planar imagery and cartesian coordinates. What shortcuts might be possible when serving graphics exclusively for spherical environments?
传统的渲染、动画和计算算法通常偏向于处理平面图像和笛卡尔坐标系统。在仅为球形环境提供图形时,我们能否找到一些简化的方法?
The dome is effectively a portal into cyberspace. XR technologies can bring cyberspace into the real space of the theater as well. Stage performances within immersive environments are greatly enhanced by tracking both props and performers and altering the immersive environment in response to their movements. Lighting and textures can be mapped onto moving performers, providing avatar-like capabilities to transform. Performers can be volumetrically scanned and placed into MMO metaverses and role-playing games.
实际上,球幕可以被视为通往网络空间的门户。扩展现实(XR)技术可以将网络空间带入剧院的实体空间。通过跟踪道具和表演者的移动,并根据这些移动来改变沉浸式环境,舞台表演在沉浸式环境中得到了极大的增强。灯光和纹理可以映射到移动的表演者身上,提供类似化身的能力进行转变。表演者可以进行体积扫描,并被放置到 MMO 元宇宙和角色扮演游戏中。
And what AR/VR/XR/360 interfaces and devices and applications can be developed for in-dome or at-home audience participation? Can a billion people attend a single immersion dome event?
我们可以开发哪些 AR/VR/XR/360 界面、设备和应用程序,以促进球幕内或家庭观众的参与?是否有可能让十亿人参与同一沉浸式球幕活动?
结论 CONCLUSION
Arts and entertainment in digital immersion domes have been steadily growing, first appearing in domes intended for astronomy and space science and giant screen documentary films. Market growth is evidenced by the success of Mesmerica, the Vortex Dome, SAT, IAIA’s Digital Dome and the more recent success of the Wisdome Art Park plus the success of Pharos which received praise from Billboard and Childish Gambino’s many fans. Recent announcements of MSG Sphere and the Vortex DomePlex indicate that arts and entertainment domes are on a growth trajectory.
数字沉浸式球幕在艺术与娱乐领域的成长持续而稳定,其起源可追溯至天文和空间科学展示,以及大型屏幕纪录片的放映。市场的扩张得到了如 Mesmerica、Vortex Dome、SAT、IAIA 的数字球幕,以及近期 Wisdome 艺术公园取得的成功案例的证实。此外,Pharos 项目也因其受到 Billboard 和 Childish Gambino 粉丝的广泛好评而备受瞩目。MSG Sphere 和 Vortex DomePlex 的最新动态进一步印证了艺术与娱乐球幕正处于上升发展轨道。
If digital arts and entertainment dome networks are to be established there will need to be standards in dome designs. Two general venue designs have been suggested for standardization efforts; the Multipurpose Dome and the CineTheater ™. A number of relevant design factors were reviewed to support such an effort. It is hoped that industry-wide cooperation will lead to a robust distribution network, allowing artists and producers to benefit from digital distribution of powerful immersive experiences.
为了构建一个数字艺术与娱乐球幕的网络,制定一系列球幕设计的标准化指南显得尤为关键。为此,我们提出了两种通用的场所设计方案——多功能球幕和 CineTheater ™——作为标准化工作的建议。我们综合考虑了众多设计要素,以支持这一努力,并期望全行业的协同合作能够促成一个强大的分销网络,从而使艺术家和制作人员得以从沉浸式体验的数字化分销中获益。
It is also hoped that the power of this next-generation immersive format is used mindfully for positive societal impact. Digital domes are part of an immersive media ecosystem that will have profound and far-reaching impact on humanity.
我们同样期待这种下一代沉浸式格式的力量能被用于产生积极的社会影响。数字球幕作为沉浸式媒体生态系统的一部分,其对人类社会的影响将是深远且广泛的。
致谢 ACKNOWLEDGMENT
All images © 2019 Visual Bandwidth, Inc. unless otherwise denoted.
除非有其他标注,所有图片版权都属于 2019 Visual Bandwidth, Inc. 。
参考文献 REFERENCES
- Bimber, O., Grundhofer, A., Zeidler, T., Danch, D., & Kapakos, P. (2006). Compensating Indirect Scattering for Immersive and Semi-Immersive Projection Displays. IEEE Virtual Reality Conference (VR 2006). 10.1109/VR.2006.34
- Brennesholtz, M. (2019). NAB’s 2019 Display Awards: DesignLED Technology. Display Daily. Retrieved from https://www.displaydaily.com/article/display-daily/nab-s-2019-display-awards
- Bublitz, D. (2011). Projektionsfl¨ache zur Frontprojektion. Patent Disclosure Document DE 10 2011 008471 A1.
- Campos, G. (2019). Kraftwerk Living Technologies launches LED dome solution. AV Magazine. Retrieved from https://www.avinteractive.com/news/products/kraftwerk-living-technologies-launches-led-dome-solution-04-04-2019/
- Csathy, P. (2018). Fearless Media 2.0: An insider’s guide & call to action for today’s media 2.0 world & where it’s going. CREATV Media, Ch., 3(Part III), 269–271.
- DIGSS. (2018). Digital Immersive Giant Screen Specifications 2.0 (DIGSS). Giant Screen Cinema Association. Retrieved from https://www.giantscreencinema.com/Member-Center/DIGSS
- Fink, J. (2004). Cirque du Soleil spares no cost with ‘KA.’ Las Vegas Sun. Retrieved from https://lasvegassun.com/news/2004/sep/16/cirque-du-soleil-spares-no-cost-with-ka/
- Fraser, P. (2018, Feb.). Giant-Screen Biz Meets Themed Entertainment…and They Get Along Just Fine!
- LF Examiner.
- Ganter, C. (2012). Projectors and Dome Effective Contrast. IPS 2012 Conference Proceedings. Retrieved from http://media.definititheaters.com/node/43
- Gaston, L., Dougall, P., & Thompson, E. D. (2008). Methods for Sharing Stereo and Multichannel Recordings among Planetariums. Proceedings of the AES 124th Convention.
- GOTO, Inc. (2016). Second full-sphere projection system installed at Fukushima Prefectural Government Environmental Creation Center. Retrieved from http://www.goto.co.jp/english/news/20160908/
- Habe, H., Saeki, N., & Matsuyama, T. (2007). Inter-reflection compensation for immersive projection display. Proceedings of the IEEE International Workshop on Projector-Camera Systems (ProCams).
- Hazleton, A. (2016). CrossBounce Simulation. GitHub, Inc. Retrieved from https://github.com/zicher3d-org/domemaster-stereo-shader/wiki/CrossBounce-Simulation
- Husband, J., & Barsalo, R. (2005). The SAT Urban Hub. Vision, issues and opportunities and future directions. SAT Metalab White Paper. Retrieved from https://bibbase.org/network/publication/husband-barsalo-thesaturbanhubvisionissuesandopportunitiesandfuturedirection-2005
- IMERSA. (2014). IMERSA/AFDI Dome Standards Group, Dome Master Standards. Retrieved from https://www.imersa.org/standards
- Kleiman, J. (2019). Evans & Sutherland launches DomeX LED display for fulldome planetariums and giant screen theaters. InPark Magazine. Retrieved from http://www.inparkmagazine.com/about/
- Kuchera-Morin, J., Wright, M., Wakefield, G., Roberts, C., Adderton, D., Sajadi, B., … Majumder,
- A. (2014). Immersive full-surround multi-user system design. Computers & Graphics, 40, 10–21. doi:10.1016/j.cag.2013.12.004
- Lantz, E. (1997). Future Directions in Visual Display Systems. Guest Editor. Computer Graphics, 31(2), 38–45. doi:10.1145/271283.271301
- Lantz, E. (2004). Fulldome Display Specifications: A Proposal. IPS 2004 Fulldome Standards Summit, Valencia, Spain.
- Lantz, E. (2009, June). The Planetarium: A Transitional Animal. Planetarian, 38(2), 6–12.
- Lantz, E. (2011, July). Planetarium of the Future. Curator, 54(3), 293–312. doi:10.1111/j.21516952.2011.00093.x
- Lantz, E. (2018). From space to the stars: Ten years of arts and entertainment at The Vortex Dome-Los Angeles. Planetarian, 47(2), 22–28.
- Lantz, E., Wyatt, R., Bruno, M., & Neafus, D. (2004). Proceedings of the IPS 2004 Fulldome Standards Summit, Valencia, Spain, 7 July 2004. Retrieved from http://extranet.spitzinc.com/reference/IPS2004/default.aspx
- Maceda, C. (2015). Take a tour of Dubai in 3.5 minutes: ‘The Sphere’-a first of its kind in the Middle East-offers virtual tour to visitors. Gulf News. Retrieved from https://gulfnews.com/travel/destinations/take-a-tour-of-dubai-in-35-minutes-1.1469766
- Manninen, S., Tuominen, L, Dunbar, R., Karjalainen, T., Hirvonen, J., Arponen, E., … Nummenmaa, L. (2017). Social Laughter Triggers Endogenous Opioid Release in Humans. The Journal of Neuroscience.
- Navitar. (2019). HemiStar ™ Application Notes. Navitar. Retrieved from https://navitar.com/products/download-document/2359/
- Passy, C. (2013, June 10). How to invest in a Broadway show. Market Watch.
- Petersen, M. (2019). Fulldome Theater Compendium. Lochness Productions. Retrieved from http://lochnessproductions.com/lfco/lfco.html
- Proctor, D. (2017). Inside South Korea’s first spherical projection theatre. AV Technology Europ. Retrieved from https://www.installation-international.com/technology/inside-south-koreas-first-spherical-projection-theatre
- Roettgers, J. (2019). Vortex Plans to Open 2,500-Seat Dome Multiplex for Headset-Free VR Experiences. Variety. February 12, 2019. Retrieved from https://variety.com/2019/digital/news/vortex-domeplex-arizona-headse-free-vr-1203136609/
- R öß ner, M., Christensen, L., & Ganter, C. (2016). Characterising Fulldome Planetarium Projection Systems: The Limitations Imposed by Physics, and Suggestions on How to Mitigate, In IPS 2016 Proceedings. Retrieved from https://www.semanticscholar.org/paper/Characterising-Fulldome-Planetarium-Projection-%3A-by-R%C3%B6%C3%9Fner-Christensen/eddb673f09666d9468e04c9cd0d1ab5dfc93e9fb
- Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. Retrieved from https://www.academia.edu/5008150/Anatomically_distinct_dopa-mine_release_during_anticipation_and_experience_of_peak_emotion_to_music. doi:10.1038/nn.2726 PMID: 21217764
- SMPTE. (2006). SMPTE Standard-D-Cinema Quality—Screen Luminance Level, Chromaticity and Uniformity. In ST 431-1: 2006. 18 April 2006. pp.1-5. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7292124&isnumber=7292123
- Stephens, R. (2019). You’ll Be Surprised by Steven Spielberg’s Latest Project. Fortune, July 27, 2019. Retrieved from https://fortune.com/2019/07/27/steven-spielberg-universal-sphere-comcast/
- Takeda, S., Iwai, D., & Sato, K. (2016). Inter-reflection Compensation of Immersive Projection Display by Spatio-Temporal Screen Reflectance Modulation. IEEE Transactions on Visualization and Computer Graphics, 22(4), 1424–1431. doi:10.1109/TVCG.2016.2518136 PMID: 26780805
- Yamamoto, N., & Philbeck, J. W. (2013). Peripheral vision benefits spatial learning by guiding eye movements. Mem Cogn 41: pp. 109-121. Retrieved from https://link.springer.com/content/pdf/10.3758%2Fs13421-012-0240-2.pdf
- Zhang, Y., Shen, Y., Zhang, W., Zhu, Z., & Ma, P. (2019). Interactive spatial augmented reality system for Chinese opera. In Proceedings of SIGGRAPH 2019. Article 14. pp. 1-2. Retrieved from https://dl.acm.org/citation.cfm?id=3338566
转载请注明来源。欢迎留言评论,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。